Specification for Structural Steel Buildings

Draft dated January 5, 2022

Supersedes the *Specification for Structural Steel Buildings* dated July 7, 2016 and all previous versions of this specification

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

130 East Randolph Street, Suite 2000 Chicago, Illinois 60601-6204

AISC © XXXX

by

American Institute of Steel Construction

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The AISC logo is a registered trademark of AISC.

17 The information presented in this publication has been prepared by a balanced com-18 mittee following American National Standards Institute (ANSI) consensus proce-19 dures and recognized principles of design and construction. While it is believed to be 20 accurate, this information should not be used or relied upon for any specific applica-21 tion without competent professional examination and verification of its accuracy, 22 suitability and applicability by a licensed engineer or architect. The publication of 23 this information is not a representation or warranty on the part of the American Insti-24 tute of Steel Construction, its officers, agents, employees or committee members, or 25 of any other person named herein, that this information is suitable for any general or 26 particular use, or of freedom from infringement of any patent or patents. All repre-27 sentations or warranties, express or implied, other than as stated above, are specifi-28 cally disclaimed. Anyone making use of the information presented in this publication 29 assumes all liability arising from such use. 30

Caution must be exercised when relying upon standards and guidelines developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The American Institute of Steel Construction bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

37

1

6 7

8 9

14

15

16

38 39

Printed in the United States of America

40

41 PREFACE 42 43 (This Preface is not part of ANSI/AISC 360-22, Specification for Structural Steel Buildings, but is included for informational purposes only.) 44 45 46 This Specification is based upon past successful usage, advances in the state of 47 knowledge, and changes in design practice. The 2022 American Institute of Steel 48 Construction's Specification for Structural Steel Buildings provides an integrated 49 treatment of allowable strength design (ASD) and load and resistance factor design 50 (LRFD), and replaces earlier Specifications. As indicated in Chapter B of the Speci-51 fication, designs can be made according to either ASD or LRFD provisions. 52 53 This ANSI-approved Specification has been developed as a consensus document us-54 ing ANSI-accredited procedures to provide a uniform practice in the design of steel-55 framed buildings and other structures. The intention is to provide design criteria for 56 routine use and not to provide specific criteria for infrequently encountered problems, 57 which occur in the full range of structural design. 58 59 This Specification is the result of the consensus deliberations of a committee of struc-60 tural engineers with wide experience and high professional standing, representing a wide geographical distribution throughout the United States. The committee includes 61 62 approximately equal numbers of engineers in private practice and code agencies, en-63 gineers involved in research and teaching, and engineers employed by steel fabricat-64 ing and producing companies. The contributions and assistance of more than 50 ad-65 ditional professional volunteers working in task committees are also hereby acknowl-66 edged. 67 The Symbols, Glossary, Abbreviations, and Appendices to this Specification are an 68 69 integral part of the Specification. A nonmandatory Commentary has been prepared to 70 provide background for the Specification provisions and the user is encouraged to 71 consult it. Additionally, nonmandatory User Notes are interspersed throughout the 72 Specification to provide concise and practical guidance in the application of the pro-73 visions. 74 75 A number of significant technical modifications have also been made since the 2016 76 edition of the Specification, including the following: 77 78 A new table is incorporated into Section A3 that lists allowable 79 grades/strengths and other specific limitations of referenced materials. 80 Adopted ASTM F3148 bolts that provide a strength of 144 ksi. A new com-• bined installation method is incorporated into Chapter J applicable to these 81 82 bolts. 83 Section A4 provides a detailed list related to what information must be provided on structural design documents. These criteria have been moved from 84 85 the Code of Standard Practice for Structural Steel Buildings. 86 A new Section A5, Approvals, is added to specifically address the review • 87 and approval of approval documents. 88 A new Section B3, Dimensional Tolerances, is added to clarify that the pro-• 89 visions of the Specification are based on specific tolerances provided in the 90 Code of Standard Practice and referenced ASTM standards. Provisions are added for doubly symmetric I-shaped compression members 91 to address lateral bracing that is offset from the shear center. 92 For flexural strength of members with holes in the tension flange, it is clari-93 94 fied that the Section F13.1 provisions apply only to bolt holes. 95 Provisions are added to Chapter G to permit tension field action in end

96	panels.	
90 97	-	for HSS subject to combined forces, to
98	include biaxial bending and shear.	for fiss subject to combined forces, to
99	-	inal and transverse reinforcing steel re-
100		umns and for both concrete encased and
101	concrete filled beams.	
102	• Chapter I now includes additional s	stiffness and strength provisions for con-
103		walls consisting of two steel plates con-
104	nected by tie bars.	
105		angular filled composite members con-
106		gths above the limits noted in Chapter I
107	are added in a new Appendix 2.	
108		low-hydrogen electrodes as they relate to
109	minimum size fillet welds are revis	
110	e	or transversely loaded fillet welds is re-
111	written and prohibited for use in the	
112	e	based on the net tensile area of bolts is
113 114	added.	ISS moment connections in Chapter V
114	•	ISS moment connections in Chapter K.
115		inspection personnel requirements. irements for Shop or Field Applied Coat-
117	· · · ·	irements for shop of Fleid Applied Coal-
	ings, is added.	
118		is removed and replaced with updated
119	guidance on this topic in Section B	
120		provisions for elements subject to fatigue.
121		ature-dependent stress-strain equations
122		erial properties for steel at elevated tem-
123	peratures.	
124 125		esign equations and related information tests are incorporated into Appendix 4.
125		hods of Analysis, includes provisions for
120		led composite columns and for compres-
127	sion in concrete-filled composite pl	
128		
129	• Provisions for calculating rivet stre	ngui are added in Appendix 5.
130	This Specification was approved by the Con	amittee on Specifications:
132		limitee on specifications.
132	James O. Malley, Chair	Judy Liu
134	Scott F. Armbrust, Vice Chair	Duane K. Miller
135	Allen Adams	Larry S. Muir
136	Taha D. Al-Shawaf	Thomas M. Murray, Emeritus
137	William F. Baker	R. Shankar Nair, Emeritus
138	John M. Barsom, Emeritus	Conrad Paulson
139	Reidar Bjorhovde, Emeritus	Douglas A. Rees-Evans
140	Roger L. Brockenbrough, Emeritus	Rafael Sabelli
141	Susan B. Burmeister	Thomas A. Sabol
142	Gregory G. Deierlein	Fahim H. Sadek
143	Bo Dowswell	Benjamin W. Schafer
144	Carol J. Drucker	Robert E. Shaw, Jr.
145	W. Samuel Easterling	Donald R. Sherman, Emeritus
146	Bruce R. Ellingwood, Emeritus	W. Lee Shoemaker
147	Michael D. Engelhardt	William A. Thornton, Emeritus
148	Shu-Jin Fang, Emeritus	Raymond H.R. Tide, Emeritus
149	James M. Fisher, Emeritus	Chia-Ming Uang
150	John W. Fisher, Emeritus	Amit H. Varma

151	Theodore V. Galambos, Emeritus
152	Michael E. Gase
153	Louis F. Geschwindner
154	Ramon E. Gilsanz
155	Lawrence G. Griffis
156	Jerome F. Hajjar
157	Ronald O. Hamburger
158	Patrick M. Hassett
159	Tony C. Hazel
160	Todd A. Helwig
161	Richard A. Henige, Jr.
162	Mark V. Holland
163	John D. Hooper
164	Nestor R. Iwankiw
165	William P. Jacobs, V
166	Ronald J. Janowiak
167	Lawrence A. Kloiber, Emeritus
168	Lawrence F. Kruth
169	Jay W. Larson
170	Roberto T. Leon

171

Donald W. White Jamie Winans Ronald D. Ziemian Cynthia J. Duncan, Secretary

The Committee honors former members, vice-chair, Patrick J. Fortney, and emeritus members, Duane S. Ellifritt and Reidar Bjorhovde, who passed away during this cycle.

The Committee gratefully acknowledges AISC Board Oversight, Matt Smith; the advisory members, Carlos Aguirre and Tiziano Perea; and the following task committee and staff members for their involvement in the development of this document.

Farid Alfawakhiri Abbas Aminmansour Caroline R. Bennett Robert Berhinig Eric Bolin Mark Braekevelt Michel Bruneau Art Bustos Joel A. Chandler Robert Chmielowski Lisa Choe Douglas Crampton Rachel Chicchi Cross Mark D. Denavit Matthew F. Fadden Larry A. Fahnestock Shelley C. Finnigan Erica C. Fischer Timothy P. Fraser Christine Freisinger Michael Gannon Rupa Garai Jeffrey Gasparott Rodney D. Gibble Nathaniel Gonner Arvind V. Goverdhan Perry S. Green

Christina Harber John Harris Alfred A. Herget Stephen M. Herlache Steven J. Herth Devin Huber Ronald B. Johnson Jeffrey Keileh Kerry Kreitman David W. Landis Chad M. Larson Dawn E. Lehman Andres Lepage Brent Leu Carlo Lini LeRoy A. Lutz Andrew Lye Bonnie E. Manley Michael R. Marian Jason P. McCormick Austin A. Meier Jared Moseley J.R. Ubejd Mujagic Kimberley T. Olson Jeffrey A. Packer Garner Palenske Robert Pekelnicky

Thomas D. Poulos Max Puchtel Christopher H. Raebel Gian Andrea Rassati Charles W. Roeder John A. Rolfes Sougata Roy Kristi Sattler Brandt Saxey Thomas J. Schlafly Jim Schoen William Scott **Richard Scruton** Bahram M. Shahrooz Thomas Sputo PUBLICA. HER. 24. 2022 Ryan Staudt Andrea E. Surovek James A. Swanson Matthew Trammell Sriramulu Vinnakota Michael A. West

Front-7

1 2 3 4 5	TABLE OF CONTENTS Note Table of Contents to be added Editorially in final published standard.
6	
7	

PUBLICA. HEN 24.2022

Symbols

8 9

Definitions for the symbols used in this standard are provided here and reflect the
definitions provided in the body of this standard. Some symbols may be used and
defined multiple times throughout the document. The section or table number shown
in the right-hand column of the list identifies the first time the symbol is used in this
document. Symbols without text definitions are omitted.

16		
17	Symbol	Definition Section
18		
19		
20	A_{BM}	Area of the base metal, in. ² (mm ²)J2.4
21	A_h	Nominal unthreaded body area of bolt or threaded part, in. ² (mm ²)J3.6
22	A_b	Nominal body area of undriven rivet, in. ² (mm ²) App. 5.3.2a
23	A_c	Area of concrete, in. ² (mm^2)
24	A_c	Area of concrete slab within effective width, in. ² (mm ²)I3.2d
25	A_c	Area of concrete infill, in. ² (mm^2)
26	A_e	Effective area, in. ² (mm ²)E7.2
27	A_e	Effective net area, in. ² (mm ²)
28	A_{e}	Summation of the effective areas of the cross section based on the reduced
29	110	effective widths, b_e , d_e or h_e , or the area as given by Equation E7-6 or E7-
30		$7, \text{ in.}^2 \text{ (mm^2)}$ E7
31	A_{fc}	Area of compression flange, in. ² (mm ²)
32	•	Gross area of tension flange, calculated in accordance with Section B4.3a,
32	A_{fg}	in. ² (mm ²)
33 34	٨	Net area of tension flange, calculated in accordance with Section B4.3b,
34 35	A_{fn}	in 2 (mm ²)
35 36	٨	Area of tension flange, in. ² (mm^2) G2.2
	A_{ft}	Gross area of angle, in. ² (mm ²)
37	A_g	Gross area of angle, in. ² (mm ²)
38	A_g	Gross area of member, in. ² (mm ²)B4.3a
39	A_g	Gross area of eyebar body, in. ² (mm^2)
40	A_g	Gross area of composite member, in. ² (mm^2)
41	A_{gv}	Gross area subject to shear, in. ² (mm^2)
42	A_n	Net area of member, in. ² (mm ²)
43	A_{nt}	Net area subject to tension, in. ² (mm ²)J4.3
44	A_{nv}	Net area subject to shear, in. ² (mm ²)J4.2
45	A_{pb}	Projected area in bearing, in. ² (mm ²)
46	A_s	Area of steel section, in. ² (mm ²)
47	A_s	Cross-sectional area of structural steel section, in. ² (mm ²)I2.1b
48	A_{sa}	Cross-sectional area of steel headed stud anchor, in. ² (mm ²)
49	A_{sf}	Area on the shear failure path, in. ² (mm ²)
50	A_{sr}	Area of continuous longitudnal reinforcing bars, in. ² (mm ²) I2.1a
51	A_{sr}	Area of developed longitudinal reinforcing steel within the effective width
52		of the concrete slab, in. ² (mm ²)I3.2d.2
53	A_{sw}	Area of steel plates in the direction of in-plane shear, in. ² (mm ²)I1.5
54	A_t	Net area in tension, in. ² (mm ²) App. 3.4
55	A_T	Nominal forces and deformations due to the design-basis fire defined in
56		Section 4.2.1 App. 4.1.4
57	A_{v}	Shear area of the steel portion of a composite member., in. ² (mm ²)I4.2
58	A_w	Area of web, the overall depth times the web thickness, dt_w , in. ² (mm ²)
59		
60	A_w	Area of web or webs, taken as the sum of the overall depth times the web
61		thickness, dt_w , in. ² (mm ²)

62	A_{we}	Effective area of the weld, in. ² (mm ²)J2.4
63	A_{wel}	Effective area of longitudinally loaded fillet welds, in. ² (mm ²)J2.4
64	A_{wet}	Effective area of transversely loaded fillet welds, in. ² (mm ²)J2.4
65	A_1	Loaded area of concrete, in. ² (mm^2)
66 67	A_1	Area of steel concentrically bearing on a concrete support, in. ² (mm ²). J8
67 68	A_2	Maximum area of the portion of the supporting surface that is geometri- cally similar to and concentric with the leaded area in $\frac{2}{2}$ (mm ²)
68	D	cally similar to and concentric with the loaded area, in. ² (mm ²)
69	В	Overall width of rectangular HSS member, measured 90° to the plane of
70	D	the connection, in. (mm)
71	B_b	Overall width of rectangular HSS branch member or plate, measured 90°
72	ת	to the plane of the connection, in. (mm)
73	B_e	Effective width of rectangular HSS branch member or plate for local
74 75	D	yielding of the transverse element, in. (mm)
75 76	B_{ep}	Effective width of rectangular HSS branch member or plate for punching
	D	shear, in. (mm)K1.1 Multiplier to account for <i>P</i> -δ effectsApp. 8.1.1
77	B_1	
78 70	B_2	Multiplier to account for $P-\Delta$ effects
79 80	C C	Compressive force due to unfactored dead load and live load, kips (kN)
80 81	C	
81	C_b	Lateral-torsional buckling modification factor for nonuniform moment di-
82	C_b	agrams when both ends of the segment are braced
84	C_{f}	Constant from Table A-3.1 for the fatigue category
85	C_{f} C_{m}	Equivalent uniform moment factor assuming no relative translation of
86	Cm	member ends
87	C_r	Reduction factor for shear rupture on pin-connected members D5.1
88	C_{v1}	Web shear strength coefficient
89	C_{v2}	Web shear buckling coefficient
90	C_w	Web shear buckling coefficient
91	$C_1^{''}$	Coefficient for calculation of effective rigidity of encased composite com-
92		pression memberI2.1b
93	C_2	Edge distance increment, in. (mm) Table J3.5
94	C_3	Coefficient for calculation of effective rigidity of filled composite com-
95		pression memberI2.2b
96	D	Outside diameter of round HSS, in. (mm) B4.1b
97	D	Heated perimeter of the beam, in. (mm) App. 4.3.2b
98	D	Heated perimeter of the column, in. (mm) App. 4.3.2a
99	D	Inside heated perimeter of the gypsum board, in. (mm) App. 4.3.2a
100	D	Outside diameter of round HSS chord member, in. (mm)
101	D	Outside dimension for square columns, or least outside dimension for rec-
102	-	tangular columns, in. (mm) App. 4.3.2b
103	D	Nominal dead load, kips (N)
104	D	Nominal dead load rating
105	D_b	Outside diameter of round HSS branch member, in. (mm)
106	D_u	A multiplier that reflects the ratio of the mean installed bolt pretension to
107	F	the specified minimum bolt pretension
108	E	Modulus of elasticity of steel = 29,000 ksi (200 000 MPa) Table B4.1b
109	E(T)	Modulus of elasticity of steel at elevated temperature, ksi (MPa)
110		
111	E_c	Modulus of elasticity of concrete = $w_c^{1.5}\sqrt{f_c'}$, ksi ($0.043w_c^{1.5}\sqrt{f_c'}$, MPa)
112		
113	$E_c(T)$	Modulus of elasticity of concrete at elevated temperature, ksi (MPa)
114		
115	E_s	Modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

116	EI_{eff}	Effective stiffness of composite section, kip-in. ² (N-mm ²)I2.1b
117	F(T)	Engineering stress at elevated temperature, ksi (MPa) App. 4.2.3b
118	F_c	Available stress in chord member, ksi (MPa)K1.1
119	F_{ca}	Available axial stress at the point of consideration, determined in accord-
120		ance with Chapter E for compression or Section D2 for tension, ksi (MPa)
121		
122	F_{cbw} , F_{cbz}	Available flexural stress at the point of consideration, determined in ac-
123		cordance with Chapter F, ksi (MPa)H2
124	F_{cr}	Buckling stress for the section as determined by analysis, ksi (MPa)
125	- 07	НЗ.3
126	F_{cr}	Lateral-torsional buckling stress for the section as determined by analysis,
127	- 07	ksi (MPa)
128	F_{cr}	Local buckling stress for the section as determined by analysis, ksi (MPa)
120	I Cr	F12.3
130	F_{e}	Elastic buckling stress, ksi (MPa)E3
130	F_{el}	Elastic local buckling stress determined according to Equation E7-5 or an
131	I el	elastic local buckling analysis, ksi (MPa)
132	F_{EXX}	Filler metal classification strength, ksi (MPa)J2.4
133	F _{EXX} F _{in}	Nominal bond stress, ksi (MPa)
		Nominal compression flange stress shows which the inelectic hyperbine
135	F_L	Nominal compression flange stress above which the inelastic buckling
136	F	limit states apply, ksi (MPa)
137	F_n	Critical buckling stress for structural steel element of filled composite
138		members, ksi (MPa)
139	F_n	Nominal stress, ksi
140	F_n	Nominal tensile stress, F_{nt} , or shear stress, F_{nv} , from Table J3.2, ksi (MPa)
141	-	
142	F_{nBM}	Nominal stress of the base metal, ksi (MPa)
143	F_{nt}	Nominal tensile stress from Table J3.2, ksi (MPa)J3.6
144 145	F_{nt}	Nominal tensile strength of the driven rivet from Table A-5.3.1, ksi (MPa) App. 5.3.2a
146	$F_{nt}(T)$	Nominal tensile strength of the bolt, ksi (MPa) App. 4.2.3b
147	F'_{nt}	Nominal tensile stress modified to include the effects of shear stress, ksi
148	- <i>m</i>	(MPa)
149	F_{nv}	Nominal shear stress from Table J3.2, ksi (MPa)J3.6
150	F_{nv}	Nominal shear strength of the driven rivet from Table A-5.3.1, ksi (MPa)
150	1 nv	App. 5.3.2a
151	$F_{nv}(T)$	Nominal shear strength of the bolt, ksi (MPa) App. 4.2.3b
152	F_{nw}	Nominal stress of the weld metal, ksi (MPa)J2.4
155	F_{nw}	Nominal stress of the weld metal in accordance with
155	1 nw	Chapter J,ksi (MPa)
155	$F_p(T)$	Proportional limit at elevated temperature
150	F_{SR}	Allowable stress range, ksi (MPa) App. 3.3
157	F_{SR} F_{TH}	Threshold allowable stress range, maximum stress range for indefinite de-
158	I TH	sign life from Table A-3.1, ksi (MPa) App. 3.3
160	F_u	Specified minimum tensile strength, ksi (MPa)
161	F_u F_u	Specified minimum tensile strength of a steel headed stud anchor, ksi
162	1' u	(MPa)
162	E	Specified minimum tensile strength of the connected material, ksi (MPa)
	F_u	
164 165	F	
165	F_u	Specified minimum tensile strength of HSS chord member material, ksi
166		(MPa)
167	$F_u(T)$	Specified minimum tensile strength at elevated temperature, ksi (MPa)
168	Г	App. 4.2.3b
169	F_{ub}	Specified minimum tensile strength of HSS branch member material, ksi
170		(MPa)K1.1

171	Г	$\mathbf{G} = \mathbf{G} + $
171	F_y	Specified minimum yield stress, ksi (MPa). As used in this Specification,
172		"yield stress" denotes either the specified minimum yield point (for those
173		steels that have a yield point) or specified yield strength (for those steels
174		that do not have a yield point)
175	F_y	Specified minimum yield stress of the type of steel being used, ksi (MPa)
176		
177	F_y	Specified minimum yield stress of the column web, ksi (MPa)J10.6
178	F_y	Specified minimum yield stress of HSS chord member material, ksi (MPa)
179		
180	$F_y(T)$	Specified minimum yield stress of steel at elevated temperature, ksi (MPa)
181		
182	F_{yb}	Specified minimum yield stress of HSS branch member or plate material,
183		ksi (MPa)
184	F_{yf}	Specified minimum yield stress of the flange, ksi (MPa)J10.1
185	F_{ysr}	Specified minimum yield stress of reinforcing steel, ksi (MPa)12.1b
186	F_{yst}	Specified minimum yield stress of the stiffener material, ksi (MPa)
187		
188	F_{yw}	Specified minimum yield stress of the web material, ksi (MPa) G2.3
189	$F_{y,max}$	Maximum permitted yield stress of steel, ksi (MPa) App. 2.1.4
190	G	Shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa)E4
191	G(T)	Shear modulus of elasticity of steel at elevated temperature, ksi (MPa)
192	C	
193	G_c	Shear modulus of concrete, ksi (MPa)
194	G_s	Shear modulus of steel, ksi (MPa)
195	Н	Ambient temperature thermal capacity of the steel column, Btu/ft °F
196		(W/kJ m K) App. 4.3.2a
197	H	Flexural constant
198	Н	Maximum transverse dimension of rectangular steel member, in. (mm)
199		
200	Н	Total story shear, in the direction of translation being considered, pro-
201		duced by the lateral forces used to compute Δ_H , kips (N) App. 8.1.3
202	Н	Overall height of rectangular HSS chord member, measured in the plane
203		of the connection, in. (mm)
204	H_b	Overall height of rectangular HSS branch member, measured in the plane
205	7	of the connection, in. (mm)
206	I	Moment of inertia in the plane of bending, in. ⁴ (mm ⁴) App. 8.1.1
207	I_c	Moment of inertia of the concrete section about the elastic neutral axis of the comparison $\frac{1}{16}$
208	7	the composite section, in. ⁴ (mm ⁴)
209	I_s	Moment of inertia of steel shape about the elastic neutral axis of the com-
210 211	T	posite section, in. ⁴ (mm ⁴)
211	I_{sr}	Moment of inertia of reinforcing bars about the elastic neutral axis of the composite section, in. ⁴ (mm ⁴)
212	T	Moment of inertia of transverse stiffeners about an axis in the web center
213	I_{st}	
214		for stiffener pairs, or about the face in contact with the web plate for single $\frac{1}{2}$
	T	stiffeners, in. ⁴ (mm ⁴)
216	I_{st1}	1 1
217		ment of the full shear post buckling resistance of the stiffened web panels, $V = V$ is $\frac{4}{3}$ (mm ⁴)
218 219	I	$V_r = V_{c1}$, in. ⁴ (mm ⁴)
	I_{st2}	1 1
220	T T	ment of web shear buckling resistance, $V_r = V_{c2}$, in. ⁴ (mm ⁴)
221 222	I_x, I_y	Moment of inertia about the principal axes, in. ⁴ (mm^4)E4
222	I_y	Moment of inertia about the y-axis, in. ⁴ (mm ⁴)
223 224	I _{yeff} I	Effective out-of-plane moment of inertia, in. ⁴ (mm^4)
224 225	I_{yc}	Moment of inertia of the compression flange about the y-axis, in. ⁴ (mm ⁴)
223		F4.2

226	I_{yt}	Moment of inertia of the tension flange about the y-axis, in. ⁴ (mm ⁴)
227		App. 6.3.2a
228	J	Torsional constant, in. ⁴ (mm ⁴)E4
229	Κ	Effective length factorE2
230	K_c	Ambient temperature thermal conductivity of the concrete, Btu/hr ft °F.
231		(W/m K)
232	K_c	Thermal conductivity of concrete or clay masonry unit, Btu/hr-ft-°F (W/m
233		K)
234	K_x	Effective length factor for flexural buckling about <i>x</i> -axisE4
235	K_{x}	Effective length factor for flexural buckling about y-axisE4
235	K_z	Effective length factor for torsional buckling about the longitudinal axis.
230	$\mathbf{\Lambda}_{Z}$	Effective length factor for torsional buckling about the longitudinal axis.
	T	
238	L	Interior dimension of one side of a square concrete box protection, in.
239	-	(mm)
240	L	Length of member, in. (mm)
241	L	Laterally unbraced length of member, in. (mm)E2
242	L	Laterally unbraced length of element, in. (mm)J4.4
243	L	Length of span, in. (mm) App. 6.3.2a
244	L	Length of member between work points at truss chord centerlines, in.
245		(mm)E5
246	L	Nominal live load, kips (N)
247	L	Nominal live load rating
248	\overline{L}	Nominal occupancy live load, kips (N) App. 4.1.4
249	Ĺ	Height of story, in. (mm)
250	$L \\ L_b$	Length between points that are either braced against lateral displacement
250	L_b	of compression flange or braced against twist of the cross section, in.
252	7	(mm)
253	L_b	Laterally unbraced length of member, in. (mm)
254	L_b	Length between points that are either braced against lateral displacement
255		of the compression region, or between points braced to prevent twist of
256		the cross section, in. (mm)
257	L_b	Largest laterally unbraced length along either flange at the point of load,
258		in. (mm)J10.4
259	L_{br}	Unbraced length within the panel under consideration, in. (mm)
260		
261	L_{br}	Unbraced length adjacent to the point brace, in. (mm) App. 6.2.2
262	L_c	Effective length of member, in. (mm)E2
263	L_c	Effective length of member for buckling about the minor axis, in. (mm).
264	c	
265	L_c	Effective length of built-up member, in. (mm)E6.1
266	L_{cx}	Effective length of member for buckling about <i>x</i> -axis, in. (mm)E4
267	L_{cy}	Effective length of member for buckling about y axis, in. (mm)
268		Effective length of member for buckling about y-axis, in: (init)
	L_{cz}	
269	T	E4
270	L_{c1}	Effective length in the plane of bending, calculated based on the assump-
271		tion of no lateral translation at the member ends, set equal to the laterally
272		unbraced length of the member unless analysis justifies a smaller value,
273		in. (mm) App. 8.1.2
274	L_{in}	Load introduction length, determined in accordance with Section I6.4, in.
275		(mm)
276	L_p	Limiting laterally unbraced length for the limit state of yielding, in. (mm)
277		
278	L_r	Limiting laterally unbraced length for the limit state of inelastic lateral-
279		torsional buckling, in. (mm)
280	L_r	Nominal roof live load
200		1.0111101 1.001 1.00 1000 1000 1000 100

0.01		
281	L_{v}	Distance from maximum to zero shear force, in. (mm)
282	L_x, L_y, L_z	Laterally unbraced length of the member for each axis, in. (mm)E4
283	M_A	Absolute value of moment at quarter point of the unbraced segment, kip-
284		in. (N-mm)F1
285	M_B	Absolute value of moment at centerline of the unbraced segment, kip-in.
286		(N-mm)F1
287	M_C	Absolute value of moment at three-quarter point of the unbraced segment,
288		kip-in. (N-mm)
289	M_c	Available flexural strength, ϕM_n or M_n/Ω , determined in accordance with
290		Chapter F, kip-in. (N-mm)
291	M_c	Design flexural strength, determined in accordance with Section I3, kip-
292	C	in. (N-mm)
293	M_c	Allowable flexural strength, determined in accordance with Section I3,
294	111	kip-in. (N-mm)
295	M_{c-ip}	Available strength for in-plane bending, kip-in. (N-mm) Table K4.1
296	M_{c-op}	Available strength for out-of-plane bending, kip-in. (N-mm). Table K4.1
297	M_{c-op} M_{cr}	Elastic lateral-torsional buckling moment, kip-in. (N-mm)
297		• • • • •
	M_{cx}	Available lateral-torsional strength for major axis flexure determined in C = 1.0 kin in (N mm) III 2
299		accordance with Chapter F using $C_b = 1.0$, kip-in. (N-mm)
300	M_{cx}	Available flexural strength about <i>x</i> -axis for the limit state of tensile rup-
301		ture of the flange, ϕM_n or M_n/Ω , determined according to Section F13.1,
302		kip-in. (N-mm)
303	M_{cx}, M_{cy}	available flexural strength, ϕM_n or M_n/Ω , determined in accordance
304		with Chapter F, kip-in. (N-mm)
305	M_{lt}	First-order moment using LRFD or ASD load combinations, due to lateral
306		translation of the structure only, kip-in. (N-mm) App. 8.1.1
307	M_{max}	Absolute value of maximum moment in the unbraced segment, kip-in. (N-
308	112 max	mm)
309	M_{mid}	Moment at middle of unbraced length, kip-in. (N-mm) App. 1.3.2c
310	M_n	Nominal flexural strength, kip-in. (N-mm)
311	M_n	Nominal flexural strength due to yielding at ambient temperature deter-
312	1 v1 _n	mined in accordance with the provisions in Section F2.1, kip-in. (N-mm)
312		App. 4.2.4e
	M	
314	M_{nt}	First-order moment using LRFD or ASD load combinations, with the
315	14	structure restrained against lateral translation, kip-in. (N-mm) App. 8.1.1
316	M_p	Plastic moment, kip-in. (N-mm) Table B4.1b
317	M_p	Moment corresponding to plastic stress distribution over the composite
318		cross section, kip-in. (N-mm)
319	M_{pf}	Plastic moment of a section composed of the flange and a segment of the
320		web with a depth, d_e , kip-in. (N-mm)
321	M_{pm}	Smaller of M_{pf} and M_{pst} , kip-in. (N-mm)
322	M_{pst}	Plastic moment of a section composed of the end stiffener plus a length of
323		web equal to d_e plus the distance from the inside face of the stiffener to
324		the end of the beam, except that the distance from the inside face of the
325		stiffener to the end of the beam shall not exceed $0.84t_w\sqrt{E/F_y}$ for calcu-
326		lation purposes, kip-in. (N-mm)
327	M_r	Required second-order flexural strength using LRFD or ASD load combi-
328		nations, kip-in. (N-mm) App. 8.1.1
329	M_r	Required flexural strength, determined in accordance with Chapter C, us-
330		ing LRFD or ASD load combinations, kip-in. (N-mm)
331	M_r	Required flexural strength, determined in accordance with Section I1.5,
332		using LRFD or ASD load combinations, kip-in. (N-mm)
333	M_r	Required flexural strength of the beam within the panel under considera-
334		tion using LRFD or ASD load combinations, kip-in. (N-mm)
		- · · · · · ·

225		
335		
336	M_r	Largest of the required flexural strengths of the beam within the unbraced
337		lengths adjacent to the point brace using LRFD or ASD load combina-
338		tions, kip-in. (N-mm) App. 6.3.1b
339	M_{br}	Required flexural strength of the brace, kip-in. (N-mm) App. 6.3.2a
340	M_{ro}	Required flexural strength in the HSS chord member at a joint, on the side
341		of joint with lower compression stress, kip-in. (N-mm)
342	M_{r-ip}	Required in-plane flexural strength in branch using LRFD or ASD load
343		combinations, kip-in. (N-mm)
344	M_{r-op}	Required out-of-plane flexural strength in branch using LRFD or ASD
345		load combinations, kip-in. (N-mm) Table K4.1
346	M_{rx}	Required flexural strength at the location of the bolt holes, determined in
347		accordance with Chapter C, using LRFD or ASD load combinations, pos-
348		itive for tension and negative for compression in the flange under consid-
349		eration, kip-in. (N-mm)
350	M_{rx}, M_{ry}	Required flexural strength, determined in accordance with Chapter C, us-
351		ing LRFD or ASD load combinations, kip-in. (N-mm)
352	M_u	Required flexural strength at elevated temperature, determined using the
353		load combination in Equation A-4-1, kip-in. and greater than $0.01M_n$ (N-
354		mm)
355	M_{v}	Moment at yielding of the extreme fiber, kip-in. (N-mm) Table B4.1b
356	M_{v}	Yield moment corresponding to yielding of the tension flange and first
357	y	yield of the compression flange, kip-in. (N-mm)
358	M_{y}	Yield moment about the axis of bending, kip-in. (N-mm)
359	M_{y}	Yield moment calculated using the geometric section modulus, kip-in. (N-
360	111y	mm)
361	M_{yc}	Yield moment in the compression flange, kip-in. (N-mm)F4.1
362	M_{yc} M_{yt}	Yield moment in the tension flange, kip-in. (N-mm)
363	$M_{y_{1}}$ M_{1}	Effective moment at the end of the unbraced length opposite from M_2 , kip-
364	1/1	in. (N-mm)
365	M_1	Smaller moment at end of unbraced length, kip-in. (N-mm)
366	1/1	App. 1.3.2c
367	M_2	Larger moment at end of unbraced length, kip-in. (N-mm)
368	11/12	Larger moment at end of unoraced length, kip-m. (N-min)
369	N_i	Notional load applied at level <i>i</i> , kips (N)
370		
370	N_i	Additional lateral load, kips (N) App. 7.3.2 Overlap connection coefficient
372	O_v	Required end and intermediate point brace strength using LRFD or ASD
	P_{br}	load combinations, kips (N)
373	ת	
374	P_c	Available compressive strength, ϕP_n or P_n/Ω , determined in accordance
375		with Chapter E, kips (N)
376	P_c	Available tensile strength, ϕP_n or P_n/Ω , determine in accordance with
377	-	Chapter D, kips (N)
378	P_c	Available compressive strength in plane of bending, kips (N) H1.3
379	P_c	Available tensile or compressive strength, ϕP_n or P_n/Ω , determined in ac-
380		cordance with Chapter D or E, kips (N)H3.2
381	P_c	Available axial strength for the limit state of tensile rupture of the net sec-
382		tion at the location of bolt holes ϕP_n or P_n/Ω , determined in accordance
383		with Section D2(b), kips (N)
384	P_c	Available axial strength, ϕP_n or P_n/Ω , determined in accordance with Sec-
385		tion I1.5, kips (N)
386	P_{cy}	Available compressive strength out of the plane of bending, kips (N)
387		H1.3

200	D	
388	P_{e}	Elastic critical buckling load determined in accordance with Chapter C or
389	_	Appendix 7, kips (N)
390	Pe story	Elastic critical buckling strength for the story in the direction of translation
391		being considered, kips (N) App 8.1.3
392	P_{e1}	Elastic critical buckling strength of the member in the plane of bending,
393		kips (N) App. 8.1.2
394	P_{lt}	First-order axial force using LRFD or ASD load combinations, due to lat-
395		eral translation of the structure only, kips (N) App. 8.1.1
396	P_{mf}	Total vertical load in columns in the story that are part of moment frames,
397		if any, in the direction of translation being considered, kips (N)
398		
399	P_n	Nominal compressive strength, kips (N)E1
400	P_n	Nominal compressive strength at ambient temperature determined in ac-
401	_	cordance with Section E3, kips (N) App. 4.2.4e
402	P_{no}	Nominal axial compressive strength without consideration of length ef-
403		fects, kips (N)I2.1b
404	P_{ns}	Cross-section compressive strength, kips (N) C2.3
405	P_{nt}	First-order axial force using LRFD and ASD load combinations, with the
406		structure restrained against lateral translation, kips (N) App. 8.1.1
407	P_p	Nominal bearing strength, kips (N) J8
408	P_p	Plastic axial compressive strength, kips (N)I2.2b
409	P_r	Largest of the required axial strengths of the column within the unbraced
410		lengths adjacent to the point brace, using LRFD or ASD load combina-
411		tions, kips (N) App. 6.2.2
412	P_r	Required axial compressive strength using LRFD or ASD load combina-
413		tions, kips (N) C2.3
414	P_r	Required axial strength of the column within the panel under considera-
415		tion, using LRFD or ASD load combinations, kips (N) App. 6.2.1
416	P_r	Required second-order axial strength using LRFD or ASD load combina-
417		tions, kips (N) App. 8.1.1
418	P_r	Required compressive strength, determined in accordance with Chapter
419		C, using LRFD or ASD load combinations, kips (N)
420	P_r	Required tensile strength, determined in accordance with Chapter C, using
421		LRFD or ASD load combinations, kips (N)H1.2
422	P_r	Required axial strength, determined in accordance with Chapter C, using
423		LRFD or ASD load combinations, kips (N)H3.2
424	P_r	Required axial strength of the member at the location of the bolt holes,
425		determined in accordance with Chapter C, using LRFD or ASD load com-
426		binations, positive in tension and negative in compression, kips (N)
427		
428	P_r	Required axial strength, determined in accordance with Section I1.5, using
429		LRFD or ASD load combinations, kips (N)I5
430	P_r	Required external force applied to the composite member, kips (N)
431		
432	P_r	Required axial strength using LRFD or ASD load combinations, kips (N)
433		J10.6
434	P_{ro}	Required axial strength in the HSS chord member at a joint, on the side of
435		joint with lower compression stress, kips (N)
436	P _{story}	Total vertical load supported by the story using LRFD or ASD load com-
437	•	binations, as applicable, including loads in columns that are not part of the
438		lateral force-resisting system, kips (N) App. 8.1.3
439	P_u	Required axial strength in compression using LRFD load combinations,
440		kips (N) App. 1.3.2b
441	P_u	Required compressive strength at elevated temperature, determined using
442		the load combination in Equation A-4-1, kips (N) App. 4.2.4e

442	ת	$\mathbf{A} = \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix}$
443	P_y	Axial yield strength of the column, kips (N)
444	Q_{ct}	Available tensile strength, determined in accordance with Section I8.3b,
445	0	kips (N)
446	Q_{cv}	Available shear strength, determined in accordance with Section I8.3a,
447	0	kips (N)
448	Q_f	Chord-stress interaction parameter
449 450	Q_g	Gapped truss joint parameter accounting for geometric effects
450 451	0	
451	Q_n	Nominal shear strength of one steel headed stud or steel channel anchor,
452	0	kips (N)
453	Q_{nt}	
454	Q_{nv}	Nominal shear strength of steel headed stud anchor, kips (N)
455	Q_{rt}	Required tensile strength, kips (N)
456	Q_{rv}	Required shear strength, kips (N)
457	F	Inside heated perimeter of the gypsum board, in. (mm) App. 4.3.2a
458	R	Fire resistance, minutes
459	R	Fire-resistance rating of column assembly, hours App. 4.3.2a
460	R	Fire endurance at equilibrium moisture conditions, minutes App. 4.3.2a
461	R	Radius of joint surface, in. (mm)
462	R_a	Required strength using ASD load combinations
463	R_{FIL}	Reduction factor for joints using a pair of transverse fillet welds only
464	D	App. 3.3
465	R_g	Coefficient to account for group effect
466	R_M	Coefficient to account for influence of P - δ on P - Δ App. 8.1.3
467	R_n	Nominal strength
468	R_n	Nominal bond strength, kips (N)
469	R_n	Nominal slip resistance, kips (N)J1.8
470	R_n	Nominal strength of the connected material, kips (N)J3.10
471	R_n	Nominal yielding strength at ambient temperature determined in accord-
472	-	ance with Section D2, kips (N) App. 4.2.4e
473	R_o	Fire endurance at zero moisture content, minutes App.4.3.2a
474	R_p	Position effect factor for shear studs
475	R_{pc}	Web plastification factor, determined in accordance with Section
476		F4.2(c)(6)
477	R_{pg}	Bending strength reduction factor
478	R_{PJP}	Reduction factor for reinforced or nonreinforced transverse partial-joint-
479		penetration (PJP) groove welds
480	R_{pt}	Web plastification factor corresponding to the tension flange yielding
481	D	limit state
482	R_u	Required tensile strength at elevated temperature, determined using the
483		load combination in Equation A-4-1 and greater than $0.01R_n$, kips (N)
484	D	
485	R_u	Required strength using LRFD load combinations
486	S	Elastic section modulus about the axis of bending, in. ³ (mm ³)
487	S	Nominal snow load, kips (N) App. 4.1.4
488	S_c	Elastic section modulus, in. ³ (mm ³)
489	S_c	Elastic section modulus to the toe in compression relative to the axis of
490	a	bending, in. ³ (mm ³)
491	S_e	Effective section modulus determined with the effective width of the com-
492	~	pression flange, in. ³ (mm ³)
493	S_{ip}	Effective elastic section modulus of welds for in-plane bending, in. ³
494	~	(mm ³)
495	S_{min}	Minimum elastic section modulus relative to the axis of bending, in. ³
496	a	(mm^3)
497	S_x	Elastic section modulus taken about the x-axis, in. ³ (mm ³) F2.2

498	S_x	Minimum elastic section modulus taken about the x-axis, in. ³ (mm ³)
499		
500	S_{op}	Effective elastic section modulus of welds for out-of-plane bending, in. ³
501		(mm ³)
502	S_{xc}, S_{xt}	Elastic section modulus referred to compression and tension flanges, re-
503		spectively, in. ³ (mm ³) Table B4.1b
504	S_y	Elastic section modulus taken about the y-axis, in. ³ (mm ³)
505	Т	Elevated temperature of steel due to unintended fire exposure, °F (°C)
506		
507	T_a	Required tension force using ASD load combinations, kips (kN)J3.9
508	T_b	Minimum fastener pretension given in Table J3.1, kips or Table J3.1M
509		(kN)J3.8
510	T_{c}	Available torsional strength, ϕT_n or T_n/Ω , determined in accordance with
511		Section H3.1, kip-in. (N-mm)
512	T_{cr}	Critical temperature in °F (°C) App. 4.2.4e
513	T_e	Equivalent thickness of concrete or clay masonry unit,
514		in accordance with ACI 216.1, in. (mm) App. 4.3.2a
515	T_n	Nominal torsional strength, kip-in. (N-mm)
516	T_r	Required torsional strength, determined in accordance with Chapter C, us-
517		ing LRFD or ASD load combinations, kip-in. (N-mm)
518	T_{u}	Required tension force using LRFD load combinations, kips (kN)J3.9
519	U	Shear lag factor
520	U_{bs}	Reduction coefficient, used in calculating block shear rupture strength
521	- 03	J4.3
522	V'	Nominal shear force between the steel beam and the concrete slab trans-
523	v	ferred by steel anchors, kips (N)
525 524	17	
-	V_{br}	Required shear strength of the bracing system in the direction perpendic-
525	IZ.	ular to the longitudinal axis of the column, kips (N) App. 6.2.1
526	V_c	Available shear strength, ϕV_n or V_n/Ω , determined in accordance with
527 528	IZ.	Chapter G, kips (N)
528	V_{c1}	Available shear strength calculated with V_n as defined in Section G2.1 or
529	17	G2.2. as applicable, kips (N)
530	V_{c2}	Available shear strength, kips (N)
531	V_n	Nominal shear strength, kips (N)
532	V_r	Required shear strength in the panel being considered, kips (N) G2.4
533	V_r	Required shear strength, determined in accordance with Chapter C, using
534	/	LRFD or ASD load combinations, kips (N)
535	V'_r	Required longitudinal shear force to be transferred to the steel or concrete,
536		kips (N)
537	W	Nominal weight of steel shape, lb/ft (kg/m) App. 4.3.2a
538	W'	Total weight of steel shape and gypsum wallboard protection, lb/ft (kg/m)
539		App. 4.3.2a
540	Y_i	Gravity load applied at level <i>i</i> from the LRFD load combination or ASD
541		load combination, as applicable, kips (N) C2.2b
542	Ζ	Plastic section modulus taken about the axis of bending, in. ³ (mm ³)
543		
544	Z_b	Plastic section modulus of branch taken about the axis of bending, in. ³
545		(mm ³)
546	Z_x	Plastic section modulus taken about the <i>x</i> -axis, in. ³ (mm ³) Table B4.1b
547	Z_y	Plastic section modulus taken about the y-axis, in. ³ (mm ³)
548	a	Clear distance between transverse stiffeners, in. (mm)
549	а	Constant determined from Table A-4.3.4 App. 4.3.2b
550	а	Distance between connectors, in. (mm)

551	~	Shoutast distance from adap of min hale to adap of member management non
552	а	Shortest distance from edge of pin hole to edge of member measured par-
552 553	~	allel to the direction of force, in. (mm)
555 554	а	Half the length of the nonwelded root face in the direction of the thickness
		of the tension-loaded plate, in. (mm)
555	a'	Weld length along both edges of the cover plate termination to the beam
556	-	or girder, in. (mm)
557	a_w	Ratio of two times the web area in compression due to application of major
558		axis bending moment alone to the area of the compression flange compo-
559	,	nents F4.2 $F10.2$
560	b	Full width of leg in compression, in. (mm)
561	b	Largest clear distance between rows of steel anchors or ties, in. (mm)
562	,	
563	b	Width of compression element as shown in Table B4.1, in. (mm) B4.1
564	b	Width of the element, in. (mm)E7.1
565	b	Width of compression flange as defined in Section B4.1b, in. (mm)
566		
567	b	Width of the leg resisting the shear force or depth of tee stem, in. (mm)
568		
569	b	Width of leg, in. (mm)
570	b_{cf}	Width of column flange, in. (mm)J10.6
571	b_e	Effective width, in. (mm)
572	b_e	Effective edge distance for calculation of tensile rupture strength of pin-
573		connected member, in. (mm) D5.1
574	b_f	Width of flange, in. (mm)
575	b_{fc}	Width of compression flange, in. (mm)F4.2
576	b_{ft}	Width of tension flange, in. (mm)
577	b_l	Length of longer leg of angle, in. (mm)E5
578	b_p	Smaller of the dimension <i>a</i> and <i>h</i> , in. (mm)
579	b_s	Length of shorter leg of angle, in. (mm)E5
580	b_s	Stiffener width for one-sided stiffeners; twice the individual stiffener
581		width for pairs of stiffeners, in. (mm) App. 6.3.2a
582	С	Distance from the neutral axis to the extreme compressive fibers, in. (mm)
583		App. 6.3.2a
584	C_{C}	Ambient temperature specific heat of concrete, Btu/lb °F (kJ/kg K)
585		
586	C_1	Effective width imperfection adjustment factor determined from Table
587		E7.1E7.1
588	d	Depth of section from which the tee was cut, in. (mm)
589	d	Depth of tee or width of web leg in tension, in. (mm)
590	d	Depth of tee or width of web leg in compression, in. (mm)
591	d	Nominal diameter of fastener, in. (mm)J3.3
592	d	Full depth of the section, in. (mm)B4.1a
593	d	Diameter, in. (mm) J7
594	d	Diameter of pin, in. (mm)D5.1
595	d_b	Depth of beam, in. (mm)J10.6
596	d_b	Nominal diameter (body or shank diameter), in. (mm) App. 3.4
597	d_c	Depth of column, in. (mm)J10.6
598	d_e	Effective width for tees, in. (mm)E7.1
599	d_m	Density of the concrete or clay masonry unit, lb/ft ³ (kg/m ³) App. 4.3.2a
600	d_{sa}	Diameter of steel headed stud anchor, in. (mm)
601	d_{tie}	Effective diameter of the tie bar, in. (mm)
602	e	Eccentricity in a truss connection, positive being away from the branches,
603		in. (mm)
604	e_{mid-ht}	Distance from the edge of steel headed stud anchor shank to the steel deck
605		web, in. (mm)

(0)	<i>c1</i>	
606	$f_{\rm c}'$	Specified compressive strength of concrete, ksi (MPa)
607	$f_{\rm c}'(T)$	Specified compressive strength of concrete at elevated temperature, ksi
608		(MPa) App. 4.2.3b
609	f_{ra}	Required axial stress at the point of consideration, determined in accord-
610		ance with Chapter C, using LRFD or ASD load combinations, ksi (MPa)
611		H2
612	frbw.frbz	Required flexural stress at the point of consideration, determined in ac-
613		cordance with Chapter C, using LRFD or ASD load combinations, ksi
614		(MPa)H2
615	f_{rv}	Required shear stress using LRFD or ASD load combinations, ksi (MPa)
616	•	
617	g	Transverse center-to-center spacing (gage) between fastener gage lines,
618	0	in. (mm)
619	g	Gap between toes of branch members in a gapped K-connection, neglect-
620	0	ing the welds, in. (mm)
621	h	Width of compression element as shown in Table B4.1, in. (mm) B4.1
622	h	Depth of web, as defined in Section B4.1b, in. (mm)
623	h h	Clear distance between flanges less the fillet at each flange, in. (mm)
623 624	п	G2.1
625	h	For built-up welded sections, the clear distance between flanges, in. (mm)
626	п	G2.1
620 627	h	For built-up bolted sections, the distance between fastener lines, in. (mm)
	n	G2.1
628	7	
629	h	Width resisting the shear force, taken as the clear distance between the
630		flanges less the inside corner radius on each side for HSS or the clear dis-
631		tance between flanges for box sections, in. (mm)
632	h	Flat width of longer side, as defined in Section B4.1b(d), in. (mm) H3.1
633	h	Total nominal thickness of Type X gypsum wallboard, in. (mm)
634		
635	h	Thickness of the concrete cover, measured between the exposed concrete
636		and nearest outer surface of the encased steel column section, in. (mm)
637		
638	h	Thickness of sprayed fire-resistant material, in. (mm) App. 4.3.2a
639	h_c	Twice the distance from the center of gravity to the following: the inside
640		face of the compression flange less the fillet or corner radius, for rolled
641		shapes; the nearest line of fasteners at the compression flange or the inside
642		faces of the compression flange when welds are used, for built-up sections,
643		in. (mm)B4.1
644	h_e	Effective width for webs, in. (mm)E7.1
645	h_f	Factor for fillersJ3.8
646	$\dot{h_o}$	Distance between flange centroids, in. (mm)E4
647	h_p	Twice the distance from the plastic neutral axis to the nearest line of fas-
648	I	teners at the compression flange or the inside face of the compression
649		flange when welds are used, in. (mm)
650	h_1	Concrete slab thickness above steel deck, in. (mm) App. 4.3.2f
651	h_1	Depth of steel deck, in. (mm)
652	k k	Distance from outer face of flange to the web toe of fillet, in. (mm)
653		J10.2
654	k_c	Coefficient for slender unstiffened elements
655	k_{c} k_{sb}	Retention factor depending on bottom flange temperature, <i>T</i> , as given in
656	€ SD	Table A-4.2.4
657	k_{ds}	Directional strength increase factor
658	k_{ds} k_E, k_y, k_p	Retention factors App. 4.2.3b
659		Slip-critical combined tension and shear coefficient
660	k_{sc} k_v	Web plate shear buckling coefficient
000	κ_{v}	web plate shear buckning coefficient

661	1	Actual length of and loaded wold in (mm)
662	l l	Actual length of end-loaded weld, in. (mm)J2.2 Length of connection, in. (mm)Table D3.1
663	l_a	Length of channel anchor, in. (mm)
664	l_a l_b	Bearing length of the load, measured parallel to the axis of the HSS mem-
665	ι _D	ber (or measured across the width of the HSS in the case of loaded cap
666		plates), in. (mm)
667	l_b	Length of bearing, in. (mm)
668	l_c	Clear distance, in the direction of the force, between the edge of the hole
669	ι_{C}	and the edge of the adjacent hole or edge of the material, in. (mm)
670		J3.10
671	l_e	Total effective weld length of groove and fillet welds to HSS for weld
672	<i>ve</i>	strength calculations, in. (mm)
673	lend	Distance from the near side of the connecting branch or plate to end of
674	vena	chord, in. (mm)
675	l_{ov}	Overlap length measured along the connecting face of the chord beneath
676	LOV	the two branches, in. (mm)
677	l_p	Projected length of the overlapping branch on the chord, in. (mm) K3.1
678	l_1^p	Largest upper width of deck rib, in. (mm)
679	$l_2^{l_1}$	Bottom width of deck rib, in (mm)
680	l_3	Width of deck upper flange, in (mm) App. 4.3.2f
681	m	Equilibrium moisture content of concrete by volume, % App. 4.3.2a
682	m	Moisture content of the concrete slab, %
683	n	Number of braced points within the span App. 6.3.2a
684	n	Threads per inch (per mm)
685	n_b	Number of bolts carrying the applied tension
686	n_s	Number of slip planes required to permit the connection to slip
687	n_{SR}	Number of stress range fluctuations in design life App. 3.3
688	p	Inner perimeter of concrete or clay masonry protection, in. (mm)
689	r	App. 4.3.2a
690	р	Pitch, in. per thread (mm per thread)
691	p_b	Perimeter of the steel-concrete bond interface within the composite cross
692	1.0	section, in. (mm)
693	p_c	Concrete density, lb/ft ³ (kg/m ³) App. 4.3.2a
694	r	Radius of gyration, in. (mm)E2
695	r_a	Radius of gyration about the geometric axis parallel to the connected leg,
696		in. (mm)
697	r_i	Minimum radius of gyration of individual component, in. (mm)E6.1
698	$\overline{r_o}$	Polar radius of gyration about the shear center, in. (mm)
699	r_t	Effective radius of gyration for lateral-torsional buckling. For I-shapes
700	- 1	with a channel cap or a cover plate attached to the compression flange,
701		radius of gyration of the flange components in flexural compression plus
702		one-third of the web area in compression due to application of major axis
703		bending moment alone, in. (mm)
704	r_x	Radius of gyration about the <i>x</i> -axis, in. (mm)E4
705	r_y	Radius of gyration about y-axis, in. (mm)E4
706	r_z	Radius of gyration about the minor principal axis, in. (mm)E5
707	s	Longitudinal center-to-center spacing (pitch) of any two consecutive bolt
708		holes, in. (mm)
709	S_t	Largest clear spacing of the ties, in. (mm)
710	t	Distance from the neutral axis to the extreme tensile fibers, in. (mm)
711		App. 6.3.2a
712	t	Plate thickness, in. (mm)
713	t	Thickness of wall, in. (mm)
714	t	Thickness of angle leg, in. (mm)
715	t	Thickness of connected material, in. (mm)J3.10

716	t	Thickness of plate, in. (mm)
717	t t	Total thickness of fillers, in. (mm)
718	t t	Design wall thickness of HSS member, in. (mm)
719	t t	Design wall thickness of HSS chord member, in. (mm)
720	t t	Thickness of angle leg or tee stem, in. (mm)
721	t t _b	Design wall thickness of HSS branch member or thickness of plate, in.
722	ι _D	(mm)
723	t _{bi}	Thickness of overlapping branch, in. (mm)
724	t _{bi} t _{bj}	Thickness of overlapped branch, in. (mm)
725	t_{cf}	Thickness of column flange, in. (mm)
726	t_{f}	Thickness of flange, in. (mm)
727	t_f t_f	Thickness of the loaded flange, in. (mm)
728	t_f	Thickness of flange of channel anchor, in. (mm)
729	t_{fc}	Thickness of compression flange, in. (mm)
730	t_{p}	Thickness of tension loaded plate, in. (mm)
731	t_{sc}	Thickness of composite plate shear wall, in. (mm)
732	t_{sc}	Thickness of web stiffener, in. (mm)
733	t_w	Thickness of web, in. (mm)
734	t_w	Smallest effective weld throat thickness around the perimeter of branch or
735	• W	plate, in. (mm)
736	t_w	Thickness of channel anchor web, in. (mm)
737	t_w	Thickness of column web, in. (mm)
738	W	Width of cover plate, in. (mm)
739	w	Size of weld leg, in. (mm)
740	W	Subscript relating symbol to major principal axis bending
741	w	Width of plate, in. (mm)
742	w	Leg size of the reinforcing or contouring fillet, if any, in the direction of
743		the thickness of the tension-loaded plate, in. (mm) App. 3.3
744	Wc	Weight of concrete per unit volume ($90 \le w_c \le 155 \text{ lb/ft}^3$ or
745	c	$1500 \le w_c \le 2500 \text{ kg/m}^3$)
746	Wr	Average width of concrete rib or haunch, in. (mm)
747	x	Subscript relating symbol to major axis bending
748	x_a	Bracing offset distance along x-axis, in. (mm)
749	x_o, y_o	Coordinates of the shear center with respect to the centroid, in. (mm)
750		E4
751	\overline{x}	Eccentricity of connection, in. (mm)
752	y	Subscript relating symbol to minor axis bending
753	y _a	Bracing offset distance along y-axis, in. (mm)E4
754	z	Subscript relating symbol to minor principal axis bending
755	Δ	First-order interstory drift due to the LRFD or ASD load combinations,
756		in. (mm)
757	Δ_H	First-order interstory drift, in the direction of translation being considered,
758		due to lateral forces, in. (mm) App. 8.1.3
759	Ω	Safety factor
760	Ω_{R}	Safety factor for bearing on concrete
761	Ω_{h}	Safety factor for flexure
762	Ω_c	Safety factor for compression
763	Ω_c	Safety factor for axially loaded composite columns
763 764	Ω_d	Safety factor for direct bond interaction
	u	Safety factor for steel headed stud anchor in tension
765 766	Ω_t	
766	Ω_{sf}	Safety factor for shear on the failure path
767	Ω_T	Safety factor for torsion
768	Ω_t	Safety factor for tension
769	Ω_t	Safety factor for tensile rupture

770	Ω_v	Safety factor for shearG1
771	Ω_v	Safety factor for steel headed stud anchor in shear
772	$\beta^{S_{v}}$	Length reduction factor given by Equation J2-1J2.2b
773	β	Width ratio; the ratio of branch diameter to chord diameter for round HSS;
774	Р	the ratio of overall branch width to chord width for rectangular HSS
775		
776	β_T	Overall brace system required stiffness, kip-in./rad (N-mm/rad)
777	P1	
778	β_{br}	Required shear stiffness of the bracing system, kip/in. (N/mm)
779	Por	App. 6.2.1
780	β_{br}	Required flexural stiffness of the brace, kip/in. (N/mm) App. 6.3.2a
781	β_{eff}	Effective width ratio; the sum of the perimeters of the two branch mem-
782	Pejj	bers in a K-connection divided by eight times the chord width
783	β_{eop}	Effective outside punching parameter
784	β_{sec}	Web distortional stiffness, including the effect of web transverse stiffen-
785	Psec	ers, if any, kip-in./rad (N-mm/rad) App. 6.3.2a
786	β_w	Section property for single angles about major principal axis, in. (mm)
787	Pw	
788	γ	Chord slenderness ratio; the ratio of one-half the diameter to the wall
789	•	thickness for round HSS; the ratio of one-half the width to wall thickness
790		for rectangular HSS
791	$\varepsilon(T)$	Engineering strain at elevated temperature, in./in.(mm/mm) App. 4.2.3b
792	$\varepsilon_{cu}(T)$	Concrete strain corresponding to $f_c'(T)$ at elevated temperature,
793		in./in.(mm/mm) App. 4.2.3b
794	$\varepsilon_p(T)$	Engineering strain at the proportional limit at elevated temperature,
795	1 < 7	in./in.(mm/mm) App. 4.2.3b
796	$\varepsilon_u(T)$	Ultimate strain at elevated temperature, in./in.(mm/mm) App. 4.2.3b
797	$\varepsilon_y(T)$	Engineering yield strain at elevated temperature, in./in.(mm/mm)
798		
799	ζ	Gap ratio; the ratio of the gap between the branches of a gapped K-con-
800		nection to the width of the chord for rectangular HSSK3.1
801	η	Load length parameter, applicable only to rectangular HSS; the ratio of
802		the length of contact of the branch with the chord in the plane of the con-
803		nection to the chord widthK1.1
804	θ	Angle between the line of action of the required force and the weld longi-
805		tudinal axis, degreesJ2.4
806	θ	Acute angle between the branch and chord, degrees
807	λ	Width-to-thickness ratio for the element as defined in Section B4.1
808	•	
809	λ_{pf}	Limiting width-to-thickness ratio for compact flange, as defined in Table
810	•	B4.1b
811	λ_{pw}	Limiting width-to-thickness ratio for compact web, as defined in Table
812	•	B4.1b
813	λ_p	Limiting width-to-thickness ratio (compact/noncompact) Table B4.1b
814	λ_r	Limiting width-to-thickness ratio (noncompact/slender) Table B4.1b
815	λ_r	Limiting width-to-thickness ratio (nonslender/slender)
816	λ_{rf}	Limiting width-to-thickness ratio for noncompact flange, as defined in Ta-
817	<u>^</u>	ble B4.1b
818	λ_{rw}	Limiting width-to-thickness ratio for noncompact web, as defined in Table
819		B4.1b F4.2
820	μ	Mean slip coefficient for Class A or B surfaces, as applicable, or as estab-
821		lished by testsJ3.8

822 823	ρ_w	Maximum shear ratio within the web panels on each side of the tast stiffener	
824	ρ_{sr}	Reinforcement ratio for continuous longitudinal reinforcement.	
825	Γ_{b}	Stiffness reduction parameter	
826	φ	Resistance factor	
827	ϕ_B	Resistance factor for bearing on concrete	
828	ϕ_b	Resistance factor for flexure	
829	ϕ_c	Resistance factor for compression	
830	ϕ_c	Resistance factor for axially loaded composite columns	
831	$\mathbf{\Phi}_d$	Resistance factor for direct bond interaction	
832	ϕ_{sf}	Resistance factor for shear on the failure path	D5.1
833	ϕ_T	Resistance factor for torsion	
834	$\mathbf{\Phi}_t$	Resistance factor for tension	H1.2
835	$\mathbf{\Phi}_t$	Resistance factor for tensile rupture	H4
836	$\mathbf{\Phi}_t$	Resistance factor for steel headed stud anchor in tension	I8.3b
837	ϕ_{ν}	Resistance factor for shear	G1
838	ϕ_{ν}	Resistance factor for steel headed stud anchor in shear	I8.3a
		PUBLICA FEB. 21,204	

840	GLOSSARY
841	
842	
843	Notes:
844	(1) Terms designated with † are common AISI-AISC terms that are coordinated be-
845	tween the two standards development organizations.
846	(2) Terms designated with * are usually qualified by the type of load effect, for ex-
847	ample, nominal tensile strength, available compressive strength, and design flex-
848	ural strength.
849	(3) Terms designated with ** are usually qualified by the type of component, for
850	example, web local buckling, and flange local bending.
851	example, web local backning, and hange local bending.
852	Active fire protection. Building materials and systems that are activated by a fire to
853	mitigate adverse effects or to notify people to take action to mitigate adverse
854	effects.
855	Allowable strength*†. Nominal strength divided by the safety factor, R_n/Ω .
855	Allowable strength $ $. Nominal strength divided by the safety factor, R_{μ} 's. Allowable stress*. Allowable strength divided by the applicable section property,
850	such as section modulus or cross-sectional area.
858	Anchor bolt. See anchor rod.
858	Anchor rod. A mechanical device that is either cast in concrete or drilled and chemi-
860	cally adhered, grouted or wedged into concrete and/or masonry for the purpose
861	of the subsequent attachment of structural steel.
862	Applicable building code [†] . Building code under which the structure is designed.
863	Approval documents. The structural steel shop drawings, erection drawings, and em-
864	
865	bedment drawings, or where the parties have agreed in the contract documents
	to provide digital model(s), the fabrication and erection models. Approval docu-
866	ments may include a combination of drawings and digital models.
867 868	ASD (allowable strength design) [†] . Method of proportioning structural components
868	such that the allowable strength equals or exceeds the required strength of the
869 870	component under the action of the ASD load combinations.
870 871	ASD load combination [†] . Load combination in the applicable building code intended
871	for allowable strength design (allowable stress design). Authority having invitediation (AUI) Organization political subdivision office on in
872	Authority having jurisdiction (AHJ). Organization, political subdivision, office or in-
873 874	dividual charged with the responsibility of administering and enforcing the pro- visions of this <i>Specification</i> .
875	Available strength*†. Design strength or allowable strength, as applicable.
875	Available stress*. Design stress or allowable stress, as applicable.
870	Average rib width. In a formed steel deck, average width of the rib of a corrugation.
877 878	<i>Beam.</i> Nominally horizontal structural member that has the primary function of re-
878 879	sisting bending moments.
880	<i>Beam-column.</i> Structural member that resists both axial force and bending moment.
881	Bearing (local compressive yielding) [†] . Limit state of local compressive yielding due
882	to the action of a member bearing against another member or surface.
883	
884	<i>Bearing-type connection</i> . Bolted connection where shear forces are transmitted by the
885	bolt bearing against the connection elements.
885 886	Block shear rupture [†] . In a connection, limit state of tension rupture along one path
	and shear yielding or shear rupture along another path.
887 888	<i>Bolting assembly.</i> An assembly of bolting components that is installed as a unit.
	<i>Bolting component.</i> Bolt, nut, washer, direct tension indicator, or other element used
889 800	as a part of a bolting assembly.
890 891	<i>Box section.</i> Square or rectangular doubly symmetric member made with four plates welded together at the corners such that it behaves as a single member
071	welded together at the corners such that it behaves as a single member.

- Braced frame[†]. Essentially vertical truss system that provides resistance to lateral
 forces and provides stability for the structural system.
- 894 *Bracing.* Member or system that provides stiffness and strength to limit the out-of-895 plane movement of another member at a brace point.
- *Branch member.* In an HSS connection, member that terminates at a chord member
 or main member.
- *Buckling*[†]. Limit state of sudden change in the geometry of a structure or any of its
 elements under a critical loading condition.
- 900 Buckling strength. Strength for instability limit states.
- Built-up member, cross section, section, shape. Member, cross section, section or
 shape fabricated from structural steel elements that are welded or bolted together.
- *Camber.* Curvature fabricated into a beam or truss so as to compensate for deflection
 induced by loads.
- 905 Charpy V-notch impact test. Standard dynamic test measuring notch toughness of a
 906 specimen.
- 907 *Chord member*. In an HSS connection, primary member that extends through a truss
 908 connection.
- 909 *Cladding*. Exterior covering of structure.
- 910Cold-formed steel structural member†. Shape manufactured by press-braking blanks911sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-912rolled coils or sheets; both forming operations being performed at ambient room
- temperature, that is, without manifest addition of heat such as would be required
 for hot forming.
- Collector. Also known as drag strut; member that serves to transfer loads between
 floor diaphragms and the members of the lateral force-resisting system.
- *Column.* Nominally vertical structural member that has the primary function of re-sisting axial compressive force.
- Column base. Assemblage of structural shapes, plates, connectors, bolts and rods at
 the base of a column used to transmit forces between the steel superstructure and
 the foundation.
- *Combined method.* Pretensioning procedure incorporating the application of a pre scribed initial torque or tension, followed by the application of a prescribed rel ative rotation between the bolt and nut.
- 925 *Compact section.* Section that can reach the plastic moment before local buckling 926 occurs as defined by the element width-to-thickness ratio less than or equal to λ_p .
- 927Compact composite section. Filled composite section that can reach the plastic axial928compressive strength or plastic moment before local buckling of the steel ele-929ments occurs as defined by the steel element width-to-thickness ratios less than930or equal to λ_p .
- 931 *Compartmentation*. Enclosure of a building space with elements that have a specific932 fire endurance.
- Complete-joint-penetration (CJP) groove weld. Groove weld in which weld metal
 extends through the joint thickness, except as permitted for HSS connections.
- 935 *Composite.* Condition in which steel and concrete elements and members work as a936 unit in the distribution of internal forces.
- *Composite beam.* Structural steel beam in contact with and acting compositely with areinforced concrete slab.
- 600 Composite component. Member, connecting element or assemblage in which steel
 and concrete elements work as a unit in the distribution of internal forces, with
 the exception of the special case of composite beams where steel anchors are
- 942 embedded in a solid concrete slab or in a slab cast on formed steel deck.
- 943 *Composite plate shear wall.* Composite wall comprised of structural steel plates, ties,
 944 steel anchors, and structural concrete acting together.
- 645 Concrete breakout surface. The surface delineating a volume of concrete surrounding
 a steel headed stud anchor that separates from the remaining concrete.

- 947 *Concrete crushing.* Limit state of compressive failure in concrete having reached the948 ultimate strain.
- 649 Concrete haunch. In a composite floor system constructed using a formed steel deck,
 650 the section of solid concrete that results from stopping the deck on each side of
 651 the girder.
- 952 *Concrete-encased beam.* Beam totally encased in concrete cast integrally with the953 slab.
- *Connection*[†]. Combination of structural elements and joints used to transmit forces
 between two or more members.
- *Construction documents.* Written, graphic and pictorial documents prepared or as sembled for describing the design (including the structural system), location and
 physical characteristics of the elements of a building necessary to obtain a build ing permit and construct a building.
- *Contract documents.* The documents that define the responsibilities of the parties that
 are involved in bidding, fabricating, and erecting structural steel. Contract documents
 ments include the design documents, the specifications, and the contract.
- 963 *Cope.* Cutout made in a structural member to remove a flange and conform to the964 shape of an intersecting member.
- Cover plate. Plate welded or bolted to the flange of a member to increase cross-sectional area, section modulus or moment of inertia.
- 967 Cross connection. HSS connection in which forces in branch members or connecting
 968 elements transverse to the main member are primarily equilibrated by forces in
 969 other branch members or connecting elements on the opposite side of the main
 970 member.
- 671 *Cyclic loading*. Repeated transient loading of sufficient frequency and magnitude of
 672 stress which could result in fatigue crack initiation and propagation.
- Design. The process of establishing the physical and other properties of a structure
 for the purpose of achieving the desired strength, serviceability, durability, constructability, economy and other desired characteristics. Design for strength, as
 used in this *Specification*, includes analysis to determine required strength and
 proportioning to have adequate available strength.
- Design-basis fire. Set of conditions that define the development of a fire and the
 spread of combustion products throughout a building or portion thereof.
- Design documents. Design drawings, design model, or a combination of drawings and
 models. In this Specification, reference to these design documents indicates de sign documents that are issued for construction as defined in Section A4.
- Design drawings. Graphic and pictorial portions of the design documents showing
 the design, location, and dimensions of the work. Design drawings generally in clude, but are not necessarily limited to, plans, elevations, sections, details,
 schedules, diagrams, and notes.
- Design model. Three-dimensional digital model of the structure that conveys the
 structural steel requirements as specified in Section A4.
- Design load[†]. Applied load determined in accordance with either LRFD load combinations or ASD load combinations, as applicable.
- 991 Design strength*†. Resistance factor multiplied by the nominal strength, ϕR_{n} .
- Design wall thickness. HSS wall thickness assumed in the determination of section
 properties.
- Diagonal stiffener. Web stiffener at column panel zone oriented diagonally to the
 flanges, on one or both sides of the web.
- Diaphragm[†]. Roof, floor or other membrane or bracing system that transfers in-plane
 forces to the lateral force-resisting system.
- Direct bond interaction. In a composite section, mechanism by which force is trans ferred between steel and concrete by bond stress.
- Distortional failure. Limit state of an HSS truss connection based on distortion of a
 rectangular HSS chord member into a rhomboidal shape.

- 1002 Distortional stiffness. Out-of-plane flexural stiffness of web.
- 1003 Double curvature. Deformed shape of a beam with one or more inflection points1004 within the span.
- 1005 *Double-concentrated forces.* Two equal and opposite forces applied normal to the 1006 same flange, forming a couple.
- 1007 Doubler. Plate added to, and parallel with, a beam or column web to increase strength1008 at locations of concentrated forces.
- 1009 *Drift*. Lateral deflection of structure.
- *Effective length factor, K.* Ratio between the effective length and the unbraced lengthof the member.
- *Effective length.* Length of an otherwise identical compression member with the samestrength when analyzed with simple end conditions.
- 1014 *Effective net area.* Net area modified to account for the effect of shear lag.
- 1015 *Effective section modulus*. Section modulus reduced to account for buckling of slen 1016 der compression elements.
- 1017 *Effective width.* Reduced width of a plate or slab with an assumed uniform stress
 1018 distribution which produces the same effect on the behavior of a structural mem 1019 ber as the actual plate or slab width with its nonuniform stress distribution.
- 1020 *Elastic analysis.* Structural analysis based on the assumption that the structure returns
 1021 to its original geometry on removal of the load.
- 1022 *Elevated temperatures.* Heating conditions experienced by building elements or
 1023 structures as a result of fire which are in excess of the anticipated ambient con 1024 ditions.
- 1025 *Encased composite member*. Composite member consisting of a structural concrete
 1026 member and one or more embedded steel shapes.
- 1027 End panel. Web panel with an adjacent panel on one side only.
- 1028 End return. Length of fillet weld that continues around a corner in the same plane.
- 1029 *Engineer of record.* Licensed professional responsible for sealing the design docu-1030 ments and specifications.
- *Erection documents.* The field-installation or member-placement drawings that are
 prepared by the fabricator to show the location and attachment of the individual
 structural steel shipping pieces. Where the parties have agreed in the contract
 documents to provide digital model(s), a dimensionally accurate 3D digital
 model produced to convey the information necessary to erect the structural steel,
 which may be the same digital model as the fabrication model. Erection docu-
- 1037 ments may include a combination of drawings and digital models.
- 1038 *Expansion rocker*. Support with curved surface on which a member bears that is able
 1039 to tilt to accommodate expansion.
- 1040 *Expansion roller*. Round steel bar on which a member bears that is able to roll to accommodate expansion.
- *Eyebar.* Pin-connected tension member of uniform thickness, with forged or thermally cut head of greater width than the body, proportioned to provide approximately equal strength in the head and body.
- 1045Fabrication documents. The shop drawings of the individual structural steel shipping1046pieces that are to be produced in the fabrication shop. Where the parties have1047agreed in the contract documents to provide digital model(s), a dimensionally
- 1048 accurate 3D digital model produced to convey the infor-mation necessary to fab-
- ricate the structural steel, which may be the same digital model as the erection
 model. Fabrication documents may include a combination of drawings and digi tal models.
- 1052 Factored load †. Product of a load factor and the nominal load.
- 1053 *Fastener*. Generic term for bolts, rivets or other connecting devices.
- *Fatigue*[†].Limit state of crack initiation and growth resulting from repeated applica tion of live loads.
- 1056 *Faying surface*. Contact surface of connection elements transmitting a shear force.

- *Filled composite member.* Composite member consisting of an HSS or box sectionfilled with structural concrete.
- 1059 *Filler metal.* Metal or alloy added in making a welded joint.
- 1060 *Filler*. Plate used to build up the thickness of one component.
- 1061 *Fillet weld reinforcement.* Fillet welds added to groove welds.
- *Fillet weld.* Weld of generally triangular cross section made between intersecting sur-faces of elements.
- *Finished surface.* Surfaces fabricated with a roughness height value measured in ac cordance with ANSI/ASME B46.1 that is equal to or less than 500 μin. (13 μm).
- *Fire*. Destructive burning, as manifested by any or all of the following: light, flame,heat or smoke.
- *Fire barrier*. Element of construction formed of fire-resisting materials and tested in
 accordance with an approved standard fire resistance test, to demonstrate compliance with the applicable building code.
- *Fire resistance.* Property of assemblies that prevents or retards the passage of excessive heat, hot gases or flames under conditions of use and enables the assemblies to continue to perform a stipulated function.
- 1074 *First-order analysis.* Structural analysis in which equilibrium conditions are formu-1075 lated on the undeformed structure; second-order effects are neglected.
- 1076 *Fitted bearing stiffener*. Stiffener used at a support or concentrated load that fits
 1077 tightly against one or both flanges of a beam so as to transmit load through bear 1078 ing.
- 1079 *Flare-bevel-groove weld.* Weld in a groove formed by a member with a curved sur1080 face in contact with a planar member.
- 1081 *Flare-V-groove weld.* Weld in a groove formed by two members with curved sur-1082 faces.
- *Flashover*. Transition to a state of total surface involvement in a fire of combustible
 materials within an enclosure.
- *Flat width.* Nominal width of rectangular HSS minus twice the outside corner radius.
 In the absence of knowledge of the corner radius, the flat width is permitted to
 be taken as the total section width minus three times the thickness.
- *Flexibility.* The ratio of the displacement (or rotation) to the corresponding applied
 force (or moment); the inverse of the stiffness.
- *Flexural buckling*[†]. Buckling mode in which a compression member deflects laterally
 without twist or change in cross-sectional shape.
- 1092 Flexural-torsional buckling[†]. Buckling mode in which a compression member bends
 1093 and twists simultaneously without change in cross-sectional shape.
- 1094 *Force*. Resultant of distribution of stress over a prescribed area.
- 1095 Formed steel deck. In composite construction, steel cold formed into a decking profile
 1096 used as a permanent concrete form.
- 1097 *Fully restrained moment connection.* Connection capable of transferring moment1098 with negligible rotation between connected members.
- 1099 *Gage*. Transverse center-to-center spacing of fasteners.
- 1100Gapped connection. HSS truss connection with a gap or space on the chord face be-1101tween intersecting branch members.
- 1102 *Geometric axis.* Axis parallel to web, flange or angle leg.
- 1103Girder filler. In a composite floor system constructed using a formed steel deck, nar-1104row piece of sheet steel used as a fill between the edge of a deck sheet and the1105flange of a girder.
- 1106 *Girder*. See *Beam*.
- Gouge. Relatively smooth surface groove or cavity resulting from plastic deformationor removal of material.
- 1109 Gravity load. Load acting in the downward direction, such as dead and live loads.
- 1110 Grip (of bolt). Thickness of material through which a bolt passes.

- 1111 Groove weld. Weld in a groove between connection elements. See also AWS1112 D1.1/D1.1M.
- 1113Gusset plate. Plate element connecting truss members or a strut or brace to a beam or1114column.
- 1115 *Heat flux.* Radiant energy per unit surface area.
- 1116 *Heat release rate.* Rate at which thermal energy is generated by a burning material.
- High-strength bolt. An ASTM F3125/F3125M or F3148 bolt, or an alternative design
 bolt that meets the requirements in RCSC Specification Section 2.12.
- *Horizontal shear.* In a composite beam, force at the interface between steel and con-crete surfaces.
- HSS (hollow structural section). Square, rectangular or round hollow structural steel
 section produced in accordance with one of the product specifications in Section
 A3.1a(b).
- *Inelastic analysis.* Structural analysis that takes into account inelastic material behav ior, including plastic analysis.
- 1126 *Initial tension.* Minimum bolt tension attained before application of the required ro-1127 tation when using the combined method to pretension bolting assemblies.
- *In-plane instability*[†]. Limit state involving buckling in the plane of the frame or the
 member.
- *Instability*[†]. Limit state reached in the loading of a structural component, frame or
 structure in which a slight disturbance in the loads or geometry produces large
 displacements.
- *Introduction length.* The length along which the required longitudinal shear force is
 assumed to be transferred into or out of the steel shape in an encased or filled
 composite column.
- *Issued for construction.* The engineer of record's designation that the design documents and specifications are authorized to be used to construct the steel structure depicted in the design documents and specifications and that these design documents and specifications incorporate the information that is to be provided per the requirements of Section A4.
- *Joint*[†]. Area where two or more ends, surfaces, or edges are attached. Categorized by
 type of fastener or weld used and method of force transfer.
- 1143Joint eccentricity. In an HSS truss connection, perpendicular distance from chord1144member center-of-gravity to intersection of branch member work points.
- 1145*k-area.* The region of the web that extends from the tangent point of the web and the1146flange-web fillet (AISC k dimension) a distance $1\frac{1}{2}$ in. (38 mm) into the web1147beyond the k dimension.
- *K-connection.* HSS connection in which forces in branch members or connecting el ements transverse to the main member are primarily equilibriated by forces in
 other branch members or connecting elements on the same side of the main mem ber.
- *Lacing.* Plate, angle or other steel shape, in a lattice configuration, that connects twosteel shapes together.
- 1154 *Lap joint.* Joint between two overlapping connection elements in parallel planes.
- *Lateral bracing*. Member or system that is designed to inhibit lateral buckling or lat eral-torsional buckling of structural members.
- *Lateral force-resisting system.* Structural system designed to resist lateral loads andprovide stability for the structure as a whole.
- 1159 *Lateral load.* Load acting in a lateral direction, such as wind or earthquake effects.
- *Lateral-torsional buckling*[†]. Buckling mode of a flexural member involving deflec tion out of the plane of bending occurring simultaneously with twist about the
 shear center of the cross section.
- 1163 *Leaning column.* Column designed to carry gravity loads only, with connections that
- are not intended to provide resistance to lateral loads.

- *Length effects.* Consideration of the reduction in strength of a member based on itsunbraced length.
- Lightweight concrete. Structural concrete with an equilibrium density of 115 lb/ft³ (1
 840 kg/m³) or less, as determined by ASTM C567.
- *Limit state*[†]. Condition in which a structure or component becomes unfit for service
 and is judged either to be no longer useful for its intended function (serviceability
 limit state) or to have reached its ultimate load-carrying capacity (strength limit
 state).
- *Load*[†]. *Force* or other action that results from the weight of building materials, occu pants and their possessions, environmental effects, differential movement, or re strained dimensional changes.
- 1176 Load effect[†]. Forces, stresses and deformations produced in a structural component
 1177 by the applied loads.
- Load factor. Factor that accounts for deviations of the nominal load from the actual
 load, for uncertainties in the analysis that transforms the load into a load effect
 and for the probability that more than one extreme load will occur simultaneously.
- *Load transfer region.* Region of a composite member over which force is directly
 applied to the member, such as the depth of a connection plate.
- *Local bending*** †. Limit state of large deformation of a flange under a concentrated
 transverse force.
- *Local buckling***. Limit state of buckling of a compression element within a cross
 section.
- 1188 Local yielding**[†]. Yielding that occurs in a local area of an element.
- 1189 *LRFD (load and resistance factor design)*[†]. Method of proportioning structural com ponents such that the design strength equals or exceeds the required strength of
 the component under the action of the LRFD load combinations.
- 1192 *LRFD load combination*[†]. Load combination in the applicable building code intended
 1193 for strength design (load and resistance factor design).
- 1194Member imperfection. Initial displacement of points along the length of individual1195members (between points of intersection of members) from their nominal loca-1196tions, such as the out-of-straightness of members due to manufacturing and fab-1197rication.
- 1198 *Mill scale.* Oxide surface coating on steel formed by the hot rolling process.
- 1199Moment connection. Connection that transmits bending moment between connected1200members.
- Moment frame[†]. Framing system that provides resistance to lateral loads and provides
 stability to the structural system, primarily by shear and flexure of the framing
 members and their connections.
- *Negative flexural strength.* Flexural strength of a composite beam in regions with
 tension due to flexure on the top surface.
- 1206 *Net area.* Gross area reduced to account for removed material.
- *Nominal dimension*. Designated or theoretical dimension, as in tables of section prop-erties.
- 1209 *Nominal load*[†]. Magnitude of the load specified by the applicable building code.
- *Nominal rib height.* In a formed steel deck, height of deck measured from the under-side of the lowest point to the top of the highest point.
- *Nominal strength**[†]. Strength of a structure or component (without the resistance factor or safety factor applied) to resist load effects, as determined in accordance with this specification.
- 1215 Noncompact section. Section that is not able to reach the plastic moment before ine-1216 lastic local buckling occurs as defined by element width-to-thickness ratio 1217 greater than λ_p and less than or equal to λ_r .
- 1218 *Noncompact composite section.* Filled composite section that is not able to reach the 1219 plastic axial compressive strength or plastic moment due to insufficient

- 1220 confinement of the infill concrete, as defined by the steel element width-to-thick-1221 ness ratio greater than λ_p and less than or equal to λ_r .
- *Nondestructive testing.* Inspection procedure wherein no material is destroyed and the
 integrity of the material or component is not affected.
- 1224 Notch toughness. Energy absorbed at a specified temperature as measured in the1225 Charpy V-notch impact test.
- *Notional load.* Virtual load applied in a structural analysis to account for destabilizing
 effects that are not otherwise accounted for in the design provisions.
- 1228 Out-of-plane buckling[†]. Limit state of a beam, column or beam-column involving
 1229 lateral or lateral-torsional buckling.
- 1230 Overlapped connection. HSS truss connection in which intersecting branch members1231 overlap.
- *Panel brace.* Brace that limits the relative movement of two adjacent brace points
 along the length of a beam or column or the relative lateral displacement of two
 stories in a frame.
- Panel zone. Web area of beam-to-column connection delineated by the extension of
 beam and column flanges through the connection, transmitting moment through
 a shear panel.
- Partial-joint-penetration (PJP) groove weld. Groove weld in which the penetration
 is intentionally less than the complete thickness of the connected element.
- Partially restrained moment connection. Connection capable of transferring moment
 with rotation between connected members that is not negligible.
- *Percent elongation.* Measure of ductility, determined in a tensile test as the maximum elongation of the gage length divided by the original gage length expressed as a percentage.
- 1245 Pipe. See HSS.
- *Pitch.* Longitudinal center-to-center spacing of fasteners. Center-to-center spacingof bolt threads along axis of bolt.
- Plastic analysis. Structural analysis based on the assumption of rigid-plastic behavior,
 that is, that equilibrium is satisfied and the stress is at or below the yield stress
 throughout the structure.
- *Plastic hinge*. Fully yielded zone that forms in a structural member when the plasticmoment is attained.
- 1253 *Plastic moment.* Theoretical resisting moment developed within a fully yielded cross1254 section.
- Plastic stress distribution method. In a composite member, method for determining
 stresses assuming that the steel section and the concrete in the cross section are
 fully plastic.
- 1258 *Plastification.* In an HSS connection, limit state based on an out-of-plane flexural1259 yield line mechanism in the chord at a branch member connection.
- *Plug weld.* Weld made in a circular hole in one element of a joint fusing that elementto another element.
- *Point brace*. Brace that limits lateral movement or twist independently of other bracesat adjacent brace points.
- 1264 *Ponding*. Retention of water due solely to the deflection of flat roof framing.
- *Positive flexural strength.* Flexural strength of a composite beam in regions with com-pression due to flexure on the top surface.
- 1267 Pretensioned bolt. Bolt tightened to the specified minimum pretension.
- *Pretensioned joint.* Joint with high-strength bolts tightened to the specified minimumpretension.
- 1270 *Properly developed.* Reinforcing bars detailed to yield in a ductile manner before 1271 crushing of the concrete occurs. Bars meeting the provisions of ACI 318, insofar
- 1272 as development length, spacing and cover are deemed to be properly developed.
- 1273 *Prying action*. Amplification of the tension force in a bolt caused by leverage between 1274 the point of applied load, the bolt, and the reaction of the connected elements.

- 1275 *Punching load.* In an HSS connection, component of branch member force perpen-1276 dicular to a chord.
- 1277 *P-* δ *effect.* Effect of loads acting on the deflected shape of a member between joints 1278 or nodes.
- 1279 $P-\Delta$ effect. Effect of loads acting on the displaced location of joints or nodes in a1280structure. In tiered building structures, this is the effect of loads acting on the1281laterally displaced location of floors and roofs.
- 1282Quality assurance. Monitoring and inspection tasks to ensure that the material pro-1283vided and work performed by the fabricator and erector meet the requirements1284of the approved construction documents and referenced standards. Quality assur-1285ance includes those tasks designated "special inspection" by the applicable build-1286ing code.
- *Quality assurance inspector (QAI).* Individual designated to provide quality assur ance inspection for the work being performed.
- *Quality assurance plan (QAP).* Program in which the agency or firm responsible for
 quality assurance maintains detailed monitoring and inspection procedures to en sure conformance with the approved construction documents and referenced
 standards.
- *Quality control.* Controls and inspections implemented by the fabricator or erector,
 as applicable, to ensure that the material provided and work performed meet the
 requirements of the approved construction documents and referenced standards.
- *Quality control inspector (QCI).* Individual designated to perform quality control in spection tasks for the work being performed.
- 1298Quality control program (QCP). Program in which the fabricator or erector, as appli-
cable, maintains detailed fabrication or erection and inspection procedures to en-
sure conformance with the approved design documents, specifications, and ref-
erenced standards.
- *Reentrant.* In a cope or weld access hole, a cut at an abrupt change in direction inwhich the exposed surface is concave.
- 1304Registered design professional in responsible charge. A registered design profes-1305sional engaged by the owner or the owner's authorized agent to review and co-1306ordinate certain aspects of the project, as determined by the authority having ju-1307risdiction, for compatibility with the design of the building or structure, including1308submittal documents prepared by others, deferred submittal documents, and1309phased submittal documents.
- *Required strength**[†]. Forces, stresses and deformations acting on a structural component, determined by either structural analysis, for the LRFD or ASD load combinations, as applicable, or as specified by this specification or Standard.
- 1313Resistance factor, ϕ^{\dagger} . Factor that accounts for unavoidable deviations of the nominal1314strength from the actual strength and for the manner and consequences of failure.
- 1315Restrained construction. Floor and roof assemblies and individual beams in buildings1316where the surrounding or supporting structure is capable of resisting significant1217the surrounding or supporting structure is capable of the surrounding of the surrounding of the surrounding structure is capable of the surrounding st
- 1317 thermal expansion throughout the range of anticipated elevated temperatures.
- 1318 *Reverse curvature.* See *double curvature.*
- *Root of joint.* Portion of a joint to be welded where the members are closest to each other.
- *Rupture strength*[†]. Strength limited by breaking or tearing of members or connecting
 elements.
- 1323Safety factor, Ω [†]. Factor that accounts for deviations of the actual strength from the1324nominal strength, deviations of the actual load from the nominal load, uncertain-1325ties in the analysis that transforms the load into a load effect, and for the manner1326and consequences of failure.
- 1327Second-order effect. Effect of loads acting on the deformed configuration of a struc-1328ture; includes P- δ effect and P- Δ effect.

- Seismic force-resisting system. That part of the structural system that has been con sidered in the design to provide the required resistance to the seismic forces pre scribed in ASCE/SEI 7.
- 1332 Seismic response modification factor. Factor that reduces seismic load effects to 1333 strength level.
- 1334 Service load combination. Load combination under which serviceability limit states1335 are evaluated.
- 1336 Service load[†]. Load under which serviceability limit states are evaluated.
- 1337 Serviceability limit state[†]. Limiting condition affecting the ability of a structure to
 1338 preserve its appearance, maintainability, durability, comfort of its occupants, or
 1339 function of machinery, under typical usage.
- *Shear buckling*[†]. Buckling mode in which a plate element, such as the web of a beam,
 deforms under pure shear applied in the plane of the plate.
- 1342 Shear lag. Nonuniform tensile stress distribution in a member or connecting element1343 in the vicinity of a connection.
- *Shear wall*[†]. Wall that provides resistance to lateral loads in the plane of the wall and
 provides stability for the structural system.
- *Shear yielding (punching).* In an HSS connection, limit state based on out-of-planeshear strength of the chord wall to which branch members are attached.
- *Sheet steel.* In a composite floor system, steel used for closure plates or miscellaneous
 trimming in a formed steel deck.
- 1350 *Shim.* Thin layer of material used to fill a space between faying or bearing surfaces.
- *Shop drawings.* Drawings of the individual structural steel pieces that are to be pro-duced in the fabrication shop.
- 1353 Sidesway buckling (frame). Stability limit state involving lateral sidesway instability1354 of a frame.
- 1355 Simple connection. Connection that transmits negligible bending moment between1356 connected members.
- 1357 Single-concentrated force. Tensile or compressive force applied normal to the flange1358 of a member.
- 1359 *Single curvature.* Deformed shape of a beam with no inflection point within the span.
- 1360Slender-element section. Section that is able to only reach a strength limited by local1361buckling of an element defined by element width-to-thickness ratio greater than1362 λ_r .
- 1363 Slender-element composite section. Filled composite section that is able to only reach 1364 an axial or flexural strength limited by local buckling of a steel element, and by 1365 not adequately confining the infill concrete to reach the confined compressive 1366 strength, as defined by the steel element width-to-thickness ratio greater than λ_r .
- 1367 Slip. In a bolted connection, limit state of relative motion of connected parts prior to1368 the attainment of the available strength of the connection.
- 1369 *Slip-critical connection.* Bolted connection designed to resist movement by friction1370 on the faying surface of the connection under the clamping force of the bolts.
- 1371 *Slot weld.* Weld made in an elongated hole fusing an element to another element.
- 1372 *Specifications*. The portion of the construction documents and the contract documents
- 1373 that consist of the written requirements for materials, standards, and workman-1374 ship.
- 1375 Specified minimum tensile strength. Lower limit of tensile strength specified for a1376 material as defined by ASTM.
- 1377 Specified minimum yield stress[†]. Lower limit of yield stress specified for a material1378 as defined by ASTM.
- 1379 Splice. Connection between two structural elements joined at their ends to form a1380 single, longer element.
- Stability. Condition in the loading of a structural component, frame or structure in
 which a slight disturbance in the loads or geometry does not produce large dis-
- 1383 placements.

- *Steel anchor*. Headed stud or hot rolled channel welded to a steel member and embedded in the concrete of a composite member to transmit shear, tension or a
 combination of shear and tension, at the interface of the two materials.
- *Stiffened element.* Flat compression element with adjoining out-of-plane elements
 along both edges parallel to the direction of loading.
- *Stiffener*. Structural element, typically an angle or plate, attached to a member to dis tribute load, transfer shear or prevent buckling.
- 1391 *Stiffness.* Resistance to deformation of a member or structure, measured by the ratio 1392 of the applied force (or moment) to the corresponding displacement (or rotation).
- 1393 *Story drift.* Horizontal deflection at the top of the story relative to the bottom of the 1394 story.
- 1395 Story drift ratio. Story drift divided by the story height.
- *Strain compatibility method.* In a composite member, method for determining the
 stresses considering the stress-strain relationships of each material and its loca tion with respect to the neutral axis of the cross section.
- 1399 Strength limit state[†]. Limiting condition in which the maximum strength of a struc 1400 ture or its components is reached.
- 1401 *Stress.* Force per unit area caused by axial force, moment, shear or torsion.
- Stress concentration. Localized stress considerably higher than average due to abrupt
 changes in geometry or localized loading.
- *Stress range*. The magnitude of the change in stress due to the application, reversal,
 or removal of the applied cyclic load.
- 1406 *Strong axis.* Major principal centroidal axis of a cross section.
- 1407 Structural analysis[†]. Determination of load effects on members and connections
 1408 based on principles of structural mechanics.
- 1409 Structural component⁺. Member, connector, connecting element or assemblage.
- Structural Integrity. Performance characteristic of a structure indicating resistance to
 catastrophic failure.
- Structural steel. Steel elements as defined in the AISC Code of Standard Practice for
 Steel Buildings and Bridges Section 2.1.
- *Structural system.* An assemblage of load-carrying components that are joined to-gether to provide interaction or interdependence.
- Substantiating connection information. Information submitted by the fabricator in
 support of connections either selected by the steel detailer or designed by the
 licensed engineer working for the fabricator.
- System imperfection. Initial displacement of points of intersection of members from
 their nominal locations, such as the out-of-plumbness of columns due to erection
 tolerances.
- T-connection. HSS connection in which the branch member or connecting element is
 perpendicular to the main member and in which forces transverse to the main
 member are primarily equilibrated by shear in the main member.
- *Tensile strength (of material)*[†]. Maximum tensile stress that a material is capable ofsustaining as defined by ASTM.
- *Tensile strength (of member).* Maximum tension force that a member is capable of sustaining.
- *Tension and shear rupture*[†]. In a bolt or other type of mechanical fastener, limit state
 of rupture due to simultaneous tension and shear force.
- *Tension field action.* Behavior of a panel under shear in which diagonal tensile forces
 develop in the web and compressive forces develop in the transverse stiffeners
 in a manner similar to a Pratt truss.
- 1434 *Thermally cut.* Cut with gas, plasma or laser.
- 1435 *Tie plate.* Plate element used to join two parallel components of a built-up column,
- girder or strut rigidly connected to the parallel components and designed to trans-mit shear between them.

- *Toe of fillet.* Junction of a fillet weld face and base metal. Tangent point of a fillet ina rolled shape.
- 1440 Torsional bracing. Bracing resisting twist of a beam or column.
- *Torsional buckling*[†]. Buckling mode in which a compression member twists about itsshear center axis.
- *Transverse reinforcement.* In an encased composite column, steel reinforcement in
 the form of closed ties or welded wire fabric providing confinement for the concrete surrounding the steel shape.
- 1446*Transverse stiffener*. Web stiffener oriented perpendicular to the flanges, attached to1447the web.
- 1448 Tubing. See HSS.
- *Turn-of-nut method.* Procedure whereby the specified pretension in high-strength
 bolts is controlled by rotating the fastener component a predetermined amount
 after the bolt has been snug tightened.
- 1452 Unbraced length. Distance between braced points of a member, measured between1453 the centers of gravity of the bracing members.
- 1454 Uneven load distribution. In an HSS connection, condition in which the stress is not
 1455 distributed uniformly through the cross section of connected elements.
- 1456 Unframed end. The end of a member not restrained against rotation by stiffeners or1457 connection elements.
- 1458 Unstiffened element. Flat compression element with an adjoining out-of-plane ele 1459 ment along one edge parallel to the direction of loading.
- 1460 Unrestrained construction. Floor and roof assemblies and individual beams in build 1461 ings that are assumed to be free to rotate and expand throughout the range of
 1462 anticipated elevated temperatures.
- 1463 Weak axis. Minor principal centroidal axis of a cross section.
- Weathering steel. High-strength, low-alloy steel that, with sufficient precautions, is
 able to be used in typical atmospheric exposures (not marine) without protective
 paint coating.
- Web local crippling[†]. Limit state of local failure of web plate in the immediate vicin-ity of a concentrated load or reaction.
- Web sidesway buckling. Limit state of lateral buckling of the tension flange oppositethe location of a concentrated compression force.
- Weld access hole. An opening that permits access for welding, backgouging, or forinsertion of backing.
- Weld metal. Portion of a fusion weld that has been completely melted during welding.
 Weld metal has elements of filler metal and base metal melted in the weld thermal cycle.
- 1476 Weld root. See root of joint.
- *Y-connection.* HSS connection in which the branch member or connecting element is
 not perpendicular to the main member and in which forces transverse to the main
 member are primarily equilibrated by shear in the main member.
- *Yield moment*[†]. In a member subjected to bending, the moment at which the extreme
 outer fiber first attains the yield stress.
- *Yield point*[†]. First stress in a material at which an increase in strain occurs without
 an increase in stress as defined by ASTM.
- *Yield strength*[†]. Stress at which a material exhibits a specified limiting deviation from
 the proportionality of stress to strain as defined by ASTM.
- 1486 *Yield stress*[†]. Generic term to denote either yield point or yield strength, as applicable
 1487 for the material.
- *Yielding*[†]. Limit state of inelastic deformation that occurs when the yield stress isreached.
- *Yielding (plastic moment)*[†]. Yielding throughout the cross section of a member as the
 moment reaches the plastic moment.

Front-36

1492	Yielding (yield moment) [†] . Yielding at the extreme fiber on the cross section of a mem-
1493	ber when the moment reaches the yield moment.

1494 1495

1496

PUBLICA. HENRICA

1497	ABBREVIATIONS
1498	
1499	The following abbreviations appear in this Specification. The abbreviations are writ-
1500	ten out where they first appear within a Section.
1501	J 11
1502	ACI (American Concrete Institute)
1503	AHJ (authority having jurisdiction)
1504	AISC (American Institute of Steel Construction)
1505	AISI (American Iron and Steel Institute)
1506	ANSI (American National Standards Institute)
1507	ASCE (American Society of Civil Engineers)
1508	ASD (allowable strength design)
1509	ASME (American Society of Mechanical Engineers)
1510	ASNT (American Society for Nondestructive Testing)
1511	AWI (associate welding inspector)
1512	AWS (American Welding Society)
1513	CJP (complete joint penetration)
1514	CVN (Charpy V-notch)
1515	ENA (elastic neutral axis)
1516	EOR (engineer of record)
1517	ERW (electric resistance welded)
1518	FCAW (flux cored arc welding)
1519	FR (fully restrained)
1520	GMAW (gas metal arc welding)
1521	HSLA (high-strength low-alloy)
1522	HSS (hollow structural section)
1523	LRFD (load and resistance factor design)
1524	MT (magnetic particle testing)
1525	NDT (nondestructive testing)
1526 1527	OSHA (Occupational Safety and Health Administration) PJP (partial joint penetration)
1527	PJF (partial joint penetration) PNA (plastic neutral axis)
1528	PQR (procedure qualification record)
1529	PR (partially restrained)
1530	PT (penetrant testing)
1532	QA (quality assurance)
1533	QAI (quality assurance inspector)
1534	$\widetilde{Q}AP$ (quality assurance plan)
1535	$\widetilde{Q}C$ (quality control)
1536	QCI (quality control inspector)
1537	QCP (quality control program)
1538	RCSC (Research Council on Structural Connections)
1539	RT (radiographic testing)
1540	SAW (submerged arc welding)
1541	SEI (Structural Engineering Institute)
1542	SFPE (Society of Fire Protection Engineers)
1543	SMAW (shielded metal arc welding)
1544	SWI (senior welding inspector)
1545	UNC (Unified National Coarse)
1546	UT (ultrasonic testing)
1547 1548	WI (welding inspector) WPQR (welder performance qualification records)
1548	WPQR (welder performance qualification records) WPS (welding procedure specification)
1349	mis (weiging procedure specification)

CHAPTER A

3

1

2

4

8 9

10 11

12

13

14

15

16

17 18 19

20

21

22

23

24

25

26 27

28 29

30

31

32 33

34

35

44

GENERAL PROVISIONS

5 This chapter states the scope of this Specification, lists referenced specifications, 6 codes and standards, and provides requirements for materials and structural design 7 documents.

The chapter is organized as follows:

- A1. Scope
- A2. Referenced Specifications, Codes, and Standards
- A3. Material
- A4. Structural Design Documents and Specifications
- A5. Approvals

A1. SCOPE

The Specification for Structural Steel Buildings (ANSI/AISC 360), hereafter referred to as this Specification, shall apply to the design, fabrication, erection, and quality of the structural steel system or systems with structural steel acting compositely with reinforced concrete, where the steel elements are defined in Section 2.1 of the AISC Code of Standard Practice for Steel Buildings and Bridges (ANSI/AISC 303), hereafter referred to as the Code of Standard Practice.

This Specification includes the Symbols, the Glossary, Abbreviations, Chapters A through N, and Appendices 1 through 8. The Commentary to this Specification and the User Notes interspersed throughout are not part of this Specification. The phrases "is permitted" and "are permitted" in this document identify provisions that comply with this Specification, but are not mandatory.

User Note: User notes are intended to provide concise and practical guidance in the application of the Specification provisions.

This Specification sets forth criteria for the design, fabrication, and erection of structural steel buildings and other structures, where other structures are defined as structures designed, fabricated, and erected in a manner similar to buildings, with building-like vertical and lateral load-resisting elements.

40 Wherever this Specification refers to the applicable building code and there is 41 none, the loads, load combinations, system limitations, and general design re-42 quirements shall be those in ASCE *Minimum Design Loads and Associated* 43 *Criteria for Buildings and Other Structures* (ASCE/SEI 7).

45 Where conditions are not covered by this Specification, designs are permitted 46 to be based on tests or analysis, subject to the approval of the authority having 47 jurisdiction. Alternative methods of analysis and design are permitted, provided 48 such alternative methods or criteria are acceptable to the authority having juris-49 diction. 50

51 **User Note:** For the design of cold-formed steel structural members, the provi-52 sions in the AISI *North American Specification for the Design of Cold-Formed*

Steel Structural Members (AISI S100) are recommended, except for cold-formed hollow structural sections (HSS), which are designed in accordance with this Specification.

57 1. Seismic Applications

53

54

55

56

58 59

60

61

62

63

64

65

66 67

68

69

70

71

72

74 75

76

77

78

79

81 82

83

84 85

86

87

88

89

90

91

92

93

94

95

96 97

98

99

100

101

102

103 104

105

106

107 108 The AISC Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341) shall apply to the design, fabrication, erection, and quality of seismic force-resisting systems of structural steel or of structural steel acting compositely with reinforced concrete, unless specifically exempted by the applicable building code.

User Note: ASCE/SEI 7 (Table 12.2-1, Item H) specifically exempts structural steel systems in seismic design categories B and C from the requirements in the AISC *Seismic Provisions for Structural Steel Buildings* if they are designed according to this Specification and the seismic loads are computed using a seismic response modification coefficient, *R*, of 3; composite systems are not covered by this exemption. The *Seismic Provisions for Structural Steel Buildings* do not apply in seismic design category A.

73 **2.** Nuclear Applications

The design, fabrication, erection, and quality of safety-related nuclear structures shall comply with the provisions of this Specification as modified by the requirements of the AISC *Specification for Safety-Related Steel Structures for Nuclear Facilities* (ANSI/AISC N690).

80 A2. REFERENCED SPECIFICATIONS, CODES, AND STANDARDS

The following specifications, codes and standards are referenced in this Specification:

- (a) American Concrete Institute (ACI)
 - ACI 216.1-14 Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies
 - ACI 318-19 Building Code Requirements for Structural Concrete and Commentary
 - ACI 318M-19 Metric Building Code Requirements for Structural Concrete and Commentary
 - ACI 349-13 Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary ACI 349M-13 Code Requirements for Nuclear Safety-Related Concrete
 - ACI 349M-13 Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary (Metric)
- (b) American Institute of Steel Construction (AISC) ANSI/AISC 303-22 Code of Standard Practice for Steel Buildings and Bridges ANSI/AISC 341-22 Seismic Provisions for Structural Steel Buildings ANSI/AISC N690-18 Specification for Safety-Related Steel Structures for Nuclear Facilities
 - (c) American Iron and Steel Institute (AISI)
 - AISI S100-16w/S2-20 North American Specification for the Design of Cold-Formed Steel Structural Members, with Supplement 2
 - AISI S310-20 North American Standard for the Design of Profiled Steel Diaphragm Panels

109 110		AISI S923-20 Test Standard for Determining the Strength and Stiffness of Shear Connections of Composite Members
111		AISI S924-20 Test Standard for Determining the Effective Flexural Stiff-
112		ness of Composite Members
113	(1)	
114	(d)	
115		ASCE/SEI 7-22 Minimum Design Loads and Associated Criteria for
116		Buildings and Other Structures
117		ASCE/SEI/SFPE 29-05 Standard Calculation Methods for Structural Fire
118		Protection
119		
120	(e)	American Society of Mechanical Engineers (ASME)
121	. /	ASME B18.2.6-19 Fasteners for Use in Structural Applications
122		ASME B46.1-19 Surface Texture, Surface Roughness, Waviness, and Lay
123		
124	(f)	American Society for Nondestructive Testing (ASNT)
125	(1)	ANSI/ASNT CP-189-2020 Standard for Qualification and Certification
125		of Nondestructive Testing Personnel
127		Recommended Practice No. SNT-TC-1A-2020 Personnel Qualification
128		and Certification in Nondestructive Testing
129		
130	(g)	
131		A6/A6M-19 Standard Specification for General Requirements for Rolled
132		Structural Steel Bars, Plates, Shapes, and Sheet Piling
133		A36/A36M-19 Standard Specification for Carbon Structural Steel
134		A53/A53M-20 Standard Specification for Pipe, Steel, Black and Hot-
135		Dipped, Zinc-Coated, Welded and Seamless
136		A193/A193M-20 Standard Specification for Alloy-Steel and Stainless
137		Steel Bolting Materials for High Temperature or High Pressure Ser-
138		vice and Other Special Purpose Applications
139		A194/A194M-20a Standard Specification for Carbon Steel, Alloy Steel,
140		and Stainless Steel Nuts for Bolts for High Pressure or High Temper-
141		ature Service, or Both
142		A216/A216M-18 Standard Specification for Steel Castings, Carbon, Suit-
143		able for Fusion Welding, for High-Temperature Service
143		
		A283/A283M-18 Standard Specification for Low and Intermediate Ten-
145		sile Strength Carbon Steel Plates
146		A307-21 Standard Specification for Carbon Steel Bolts, Studs, and
147		Threaded Rod 60,000 PSI Tensile Strength
148		
149		User Note: ASTM A325/A325M are now included as a Grade within
150		ASTM F3125.
151		
152		A354-17e2 Standard Specification for Quenched and Tempered Alloy
153		Steel Bolts, Studs, and Other Externally Threaded Fasteners
154		A370-20 Standard Test Methods and Definitions for Mechanical Testing
155		of Steel Products
156		A449-14(2020) Standard Specification for Hex Cap Screws, Bolts and
157		Studs, Steel, Heat Treated, 120/105/90 ksi Minimum Tensile Strength,
158		General Use
159		
160		User Note: ASTM A490/A490M are now included as a Grade within
161		ASTM F3125.
162		1010110120.
162		A500/A500M-21 Standard Specification for Cold-Formed Welded and
163		Seamless Carbon Steel Structural Tubing in Rounds and Shapes
107		seamess Carbon sieet structural rubing in Kounas and Shapes

 A501/A501M-14 Standard Specification for Hot-Formed Welded an Seamless Carbon Steel Structural Tubing A502-03(2015) Standard Specification for Rivets, Steel, Structural A514/A514M-18e1 Standard Specification for High-Yield-Strength Quenched and Tempered Alloy Steel Plate, Suitable for Welding A529/A529M-19 Standard Specification for Carbon and Alloy Steel Nu ganese Steel of Structural Quality A568/A563M-21 Standard Specification for Carbon and Alloy Steel Nu (Inch and Metric) A568/A563M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance A606/A606M-18 Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use A6673/A673M-17 Standard Specification for Stuctural Steel for Bridge A673/A673M-17 Standard Specification for Structural Steel for Bridge A668/A668M-20a Standard Specification for Structural Steel for Bridge A799/A709M-18 Standard Specification for Structural Steel for Bridge A791/A913M-19 Standard Specification for High-Strength Low-Allo Steenless High-Strength Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance A913/A913M-	, , , , , , , , , , , , , , , , , , ,
167 A502-03(2015) Standard Specification for Rivets, Steel, Structural 168 A514/A514M-18e1 Standard Specification for High-Yield-Strengt 169 Quenched and Tempered Alloy Steel Plate, Suitable for Welding 170 A529/A529M-19 Standard Specification for High-Strength Carbon-Mar 171 ganese Steel of Structural Quality 172 A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu 173 (Inch and Metric) 174 A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Stru 175 tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled 176 General Requirements for 177 A572/A572M-21e1 Standard Specification for High-Strength Low-Allo 178 Columbium-Vanadium Structural Steel 179 A588/A588M-19 Standard Specification for High-Strength Low-Allo 180 Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi 181 Atmospheric Corrosion Resistance 182 A606/A606M-18 Standard Specification for Hot-Formed Welde 183 Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A 184 mospheric Corrosion Resistance 185 A618/A618M-04(2015) Standard Specification for Hot-Formed Welde	
168 A514/A514M-18e1 Standard Specification for High-Yield-Strengt 169 Quenched and Tempered Alloy Steel Plate, Suitable for Welding 170 A529/A529M-19 Standard Specification for High-Strength Carbon-Mail 171 ganese Steel of Structural Quality 172 A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu 173 (Inch and Metric) 174 A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled 175 tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled 176 General Requirements for 177 A572/A572M-21e1 Standard Specification for High-Strength Low-Allo 178 Columbium-Vanadium Structural Steel 179 A588/A588M-19 Standard Specification for High-Strength Low-Allo 180 Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi 181 Atmospheric Corrosion Resistance 182 A606/A606M-18 Standard Specification for Hot-Formed Welde 183 Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A 184 mospheric Corrosion Resistance 185	
169Quenched and Tempered Alloy Steel Plate, Suitable for Welding170A529/A529M-19 Standard Specification for High-Strength Carbon-Marganese Steel of Structural Quality171ganese Steel of Structural Quality172A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu173(Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled176General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo178Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon ar188A109, for General Industrial Use199A709/A709M-18 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Cold-Formed Welded an192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specific	
170A529/A529M-19 Standard Specification for High-Strength Carbon-Mar ganese Steel of Structural Quality171ganese Steel of Structural Quality172A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu (Inch and Metric)173(Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Stru- tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use188A109, for General Industrial Use199A709/A709M-18 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Cold-Formed Welded an cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance195Steel Shapes of Structural Specification for High-Strength Low-Allo Structural Steel Products194A847/A847M-20 Standard Specification fo	5 - - - - - - - - - - - - - - - - - - -
171ganese Steel of Structural Quality172A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu (Inch and Metric)173(Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for High-Strength Low-Allo Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Cold-Formed Welded an cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance195Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance194A847/A847M-20 Standard Specification for Cold-For	5 - - - - - - - - - - - - - - - - - - -
171ganese Steel of Structural Quality172A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu (Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolley General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for High-Strength Low-Allo Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Sampling Procedure for In pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Sampling Procedure for In pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Cold-Formed Welded an cal Analysis of Steel Products193cale Astri/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance194A847/A847M-20 Standard Specification for Hig	5 - - - - - - - - - - - - - - - - - - -
172A563/A563M-21 Standard Specification for Carbon and Alloy Steel Nu (Inch and Metric)173(Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for176General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Cold-Formed Welded an cal Analysis of Steel Products193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo Steel Shapes of Structural Specification f	- , , , , , , , , , , , , , , , , , , ,
173(Inch and Metric)174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for176General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use188A110y, for General Industrial Use189A673/A673M-17 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Cold-Formed Welded an cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resi	- , , , , , , , , , , , , , , , , , , ,
174A568/A568M-19a Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled175tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled176General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo178Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Cold-Formed Welded an192A71-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Anospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structura	, , , , , , , , , , , , , , , , , , ,
175tural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use188Alloy, for General Industrial Use190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo Steel Shapes of Structural Quality, Produced by Quenching and Sel Tempering Process (QST)	, , , , , , , , , , , , , , , , , , ,
176General Requirements for177A572/A572M-21e1 Standard Specification for High-Strength Low-Allo178Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higl183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Cold-Formed Welded an193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	/ n - - l
177A572/A572M-2le1 Standard Specification for High-Strength Low-Alla Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Alla Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, High Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an Alloy, for General Industrial Use188A100y, for General Industrial Use190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo Steel Shapes of Structural Quality, Produced by Quenching and Sel Tempering Process (QST)	, - - !
178Columbium-Vanadium Structural Steel179A588/A588M-19 Standard Specification for High-Strength Low-Allo180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higi183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Structural Steel for Bridge191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Set199Tempering Process (QST)	, - - !
179A588/A588M-19 Standard Specification for High-Strength Low-Allo180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, High183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188A1loy, for General Industrial Use189A673/A673M-17 Standard Specification for Structural Steel for Bridge190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	n - - !
180Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, wi Atmospheric Corrosion Resistance181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, Higl Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A mospheric Corrosion Resistance184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon ar Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chemi cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an Seamless High-Strength, Low-Alloy Structural Tubing with Improve Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo Steel Shapes of Structural Quality, Produced by Quenching and Sel Tempering Process (QST)	n - - !
181Atmospheric Corrosion Resistance182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, High183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for Im190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	- - !
182A606/A606M-18 Standard Specification for Steel, Sheet and Strip, High183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for Im190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	- ! !
183Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved A184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for Im190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	- ! !
184mospheric Corrosion Resistance185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	i i
185A618/A618M-04(2015) Standard Specification for Hot-Formed Welde186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon and188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for Im190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	l
186and Seamless High-Strength Low-Alloy Structural Tubing187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	l
187A668/A668M-20a Standard Specification for Steel Forgings, Carbon an188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
188Alloy, for General Industrial Use189A673/A673M-17 Standard Specification for Sampling Procedure for In190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded an195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
189A673/A673M-17 Standard Specification for Sampling Procedure for Impact Testing of Structural Steel190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improve195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allog198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	-
190pact Testing of Structural Steel191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
191A709/A709M-18 Standard Specification for Structural Steel for Bridge192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
192A751-20 Standard Test Methods, Practices, and Terminology for Chem193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
193cal Analysis of Steel Products194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allow198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	-
194A847/A847M-20 Standard Specification for Cold-Formed Welded and195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allow198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
195Seamless High-Strength, Low-Alloy Structural Tubing with Improve196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	l
196Atmospheric Corrosion Resistance197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
197A913/A913M-19 Standard Specification for High-Strength Low-Allo198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	
198Steel Shapes of Structural Quality, Produced by Quenching and Sel199Tempering Process (QST)	,
199 Tempering Process (QST)	
200 II) 2/II) 20 Standard Specification for Structural Steel Shapes	
201 A1011/A1011M-18a Standard Specification for Steel, Sheet and Stri	
202 Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High	
	l
204 Strength 205 A1042/A1042M 18 Standard Strength for Strength Strength La	
205 A1043/A1043M-18 Standard Specification for Structural Steel with Lo	<i>′</i>
206 Yield to Tensile Ratio for Use in Buildings	
207 A1065/A1065M-18 Standard Specification for Cold-Formed Electric-Fi	
208 sion (Arc) Welded High-Strength Low-Alloy Structural Tubing	ı
209 Shapes, with 50 ksi [345 MPa] Minimum Yield Point	
210 A1066/A1066M-11(2015)e1 Standard Specification for High-Streng	
211 Low-Alloy Structural Steel Plate Produced by Thermo-Mechanica	l
212 Controlled Process (TMCP)	
213 A1085/A1085M-15 Standard Specification for Cold-Formed Welde	l
214 Carbon Steel Hollow Structural Sections (HSS)	
215 C567/C567M-19 Standard Test Method for Determining Density of Strue	-
216 tural Lightweight Concrete	
217 E119-20 Standard Test Methods for Fire Tests of Building Construction	
218 and Materials	
219 E165/E165M-18 Standard Practice for Liquid Penetrant Examination for	
220 General Industry	ı

221	E709-15 Standard Guide for Magnetic Particle Examination
222	F436/F436M-19 Standard Specification for Hardened Steel Washers Inch
223	and Metric Dimensions
224	F606/F606M-21 Standard Test Methods for Determining the Mechanical
225	Properties of Externally and Internally Threaded Fasteners, Wash-
226	ers, Direct Tension Indicators, and Rivets
227	F844-19 Standard Specification for Washers, Steel, Plain (Flat), Unhard-
228	ened for General Use
229	F959/F959M-17a Standard Specification for Compressible-Washer-Type
230	Direct Tension Indicators for Use with Structural Fasteners, Inch and
231	Metric Series
232	
	F1554-20 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-
233	ksi Yield Strength
234	
235	User Note: ASTM F1554 is the most commonly referenced specification
236	for anchor rods. Grade and weldability must be specified.
	for anenor rous. Grade and weidability must be speemed.
237	
238	User Note: ASTM F1852 and F2280 are now included as Grades within
239	ASTM F3125.
240	
241	F3043-15 Standard Specification for "Twist Off" Type Tension Control
242	Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated,
243	200 ksi Minimum Tensile Strength
244	F3111-16 Standard Specification for Heavy Hex Structural
245	Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Min-
246	imum Tensile Strength
247	F3125/F3125M-19e2 Standard Specification for High Strength Structural
248	Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Di-
249	mensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric
250	Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength
251	F3148-17a Standard Specification for High Strength Structural Bolt As-
252	semblies, Steel and Alloy Steel, Heat Treated, 144 ksi Minimum Ten-
253	sile Strength, Inch Dimensions
254	
255	(h) American Welding Society (AWS)
256	AWS A5.1/A5.1M:2012 Specification for Carbon Steel Electrodes for
257	Shielded Metal Arc Welding
258	AWS A5.5/A5.5M:2014 Specification for Low-Alloy Steel Electrodes for
259	Shielded Metal Arc Welding
260	AWS A5.17/A5.17M:1997 (R2019) Specification for Carbon Steel Elec-
261	trodes and Fluxes for Submerged Arc Welding
262	AWS A5.18/A5.18M:2017 Specification for Carbon Steel Electrodes and
263	Rods for Gas Shielded Arc Welding
264	AWS A5.20/A5.20M:2005 (R2015) Specification for Carbon Steel Elec-
265	trodes for Flux Cored Arc Welding
266	AWS A5.23/A5.23M:2011 Specification for Low-Alloy Steel Electrodes
267	and Fluxes for Submerged Arc Welding
268	
	AWS A5.25/A5.25M:1997 (R2009) Specification for Carbon and Low-
269	Alloy Steel Electrodes and Fluxes for Electroslag Welding
270	AWS A5.26/A5.26M:2020) Specification for Carbon and Low-Alloy Steel
271	Electrodes for Electrogas Welding
272	AWS A5.28/A5.28M:2020 Specification for Low-Alloy Steel Electrodes
272	and Rods for Gas Shielded Arc Welding
274	AWS A5.29/A5.29M:2010 Specification for Low-Alloy Steel Electrodes
275	for Flux Cored Arc Welding

276			AWS A5.32M/A5.32:2011 Welding Consumables—Gases and Gas Mix-
277			tures for Fusion Welding and Allied Processes
278			
279			AWS B5.1:2013-AMD1 Specification for the Qualification of Welding
280			Inspectors
281			AWS D1.1/D1.1M:2020 Structural Welding Code—Steel
282			AWS D1.3/D1.3M:2018 Structural Welding Code—Sheet Steel
283			
284		(i)	Research Council on Structural Connections (RCSC)
285			Specification for Structural Joints Using High-Strength Bolts, 2020
286			
287		(j)	Steel Deck Institute (SDI)
288			ANSI/SDI QA/QC-2011 Standard for Quality Control and Quality As-
289			surance for Installation of Steel Deck
290			
291		(k)	Underwriters Laboratories, Inc. (UL)
292			UL 263, Edition 14m, Standard for Fire Tests of Building Construction
293			and Materials, 2018
294			
295	A3.	MA	TERIAL
296			
297	1.	Stru	actural Steel Materials
298			
299			terial test reports or reports of tests made by the fabricator or a testing la-
300			atory shall constitute sufficient evidence of conformity with one of the
301			ndard designations listed in Table A3.1, subject to the grades and limitations
302			ed. For hot-rolled structural shapes, plates, and bars, such tests shall be
303			de in accordance with ASTM A6/A6M; for sheets, such tests shall be made
304		in a	accordance with ASTM A568/A568M; and for tubing and pipe, such tests

in accordance with ASTM A568/A568M; and for tubing and pipe, such tests shall be made in accordance with the requirements of the applicable ASTM standards listed in Section A2 for those product forms.

308 1a. Listed Materials309

Structural steel material conforming to one of the standard designations shown in Table A3.1 subject to the grades and limitations listed are considered to perform as anticipated in the other provisions of this Specification and are approved for use under this Specification.

313 314

305 306

307

310

311

312

2	TABLE A3.1 Listed Materials	
Standard Designa-	Permissible	Other Limitations
tion	Grades/Strengths	
(a) Hot-Rolled Shapes		
ASTM A36/A36M	-	-
ASTM A529/A529M	Gr. 50 [345] or Gr. 55 [380]	—
ASTM A572/A572M	Gr. 42 [290], Gr. 50 [345], Gr. 55 [380], Gr. 60 [415], or Gr. 65 [450]	Type 1, 2, or 3
ASTM A588/A588M	-	-
ASTM A709/A709M	Gr. 36 [250], Gr. 50 [345], Gr. 50S [345S], Gr. 50W [345W], QST 50 [QST345], QST 50S [QST345S], QST 65 [QST450], or QST 70 [QST485]	_

	TABLE A3.1	
	Listed Materials	
Standard Designa-	Permissible	Other Limitations
tion	Grades/Strengths	
ASTM A913/A913M	Gr. 50 [345], Gr. 60 [415],	_
	Gr. 65 [450], Gr. 70 [485], or	
	Gr. 80 [550]	
ASTM A992/A992M		_
ASTM A1043/A1043M	Gr. 36 [250] or Gr. 50 [345]	_
(b) Hollow Structural S	· · ·	1
ASTM A53/A53M	Gr. B	-
ASTM A500/A500M	Gr. B, Gr. C, or Gr. D	-
ASTM A501/A501M	Gr. B	ERW or seamless
ASTM A618/A618M	Gr. Ia, Gr. Ib, Gr. II, or Gr. III	ERW or seamless
ASTM A847/A847M	-	_
ASTM A1065/A1065M	Gr. 50 [345] or Gr. 50W	A572, A588, or A709
A O T M	[345W]	HPS 50W [345W]
ASTM	Gr. A	_
A1085/A1085M ^[a] (c) Plates		
ASTM A36/A36M		
ASTM A30/A30M ASTM A283/A283M	Gr. C or Gr. D	
ASTM A203/A203M ASTM A514/A514M	GI. C OI GI. D	See Note [b].
ASTM A514/A514M ASTM A529/A529M		See Note [b].
ASTM A529/A529M ASTM A572/A572M	Gr. 42 [290], Gr. 50 [345],	 Type 1,2, or 3
A31W A372/A372W	Gr. 55 [380], Gr. 60 [415], or	Type 1,2, 01 3
	Gr. 65 [450]	
ASTM A588/A588M	61:00[400]	
ASTM A308/A308M ASTM A709/A709M	 Gr. 36 [250], Gr. 50 [345],	_
AS I M A/ 09/A/ 09/M	Gr. 50W [345W], HPS 50W	_
	[HPS345W], HPS 70W	
	[HPS485W], or HPS 100W	
	[HPS 690W]	
ASTM A1043/A1043M	Gr. 36 [250] or Gr. 50 [345]	_
ASTM A1066/A1066M	Gr. 50 [345], Gr. 60 [415],	_
	Gr. 65 [450], Gr. 70 [485], or	
	Gr. 80 [550]	
(d) Bars		
ASTM A36/A36M		-
ASTM A529/A529M	Gr. 50 [345] or Gr. 55 [380]	_
ASTM A572/A572M	Gr 42 [290], Gr. 50 [345],Gr.	Type 1, 2, or 3
	55 [380], Gr. 60 [415], or Gr.	
	65 [450]	
ASTM A709/A709M	Gr. 36 [250], Gr. 50 [345],	
	50W [345W], HPS 50W	-
	[HPS345W],	
(e) Sheet		T 0.4 5
ASTM A606/A606M	Gr. 45 [310] or Gr. 50 [345]	Type 2, 4, or 5
ASTM A1011/A1011M	Gr. 30 [205] through Gr. 80	SS, HSLAS, HSLAS-F;
indiantes no re-tui-t	[550]	all types and classes
	applicable on grades/strengths	or there are no limitations,
as applicable ERW = electric resistanc	o welded	
	e weided material is only available in Gr	ade Δ therefore it is par
	1085/A1085M without any grad	
	on, the steel producer shall be co	
dations on minimum and	maximum preheat limits, and m	inimum and maximum
heat input limits.		

315

319320321322

316

317

318

323

324

325

326

328

329 330

331

332

336

350

355 356

357 358

360

1b. Other Materials

and thickness.

Materials other than those listed in Table A3.1 are permitted for specific applications when the suitability of the material is determined to be acceptable by the engineer of record (EOR).

User Note: Plates, sheets, strips, and bars are different products; however, de-

sign rules do not make a differentiation between these products. The most com-

mon differences among these products are their physical dimensions of width

327 1c. Unidentified Steel

Unidentified steel, free of injurious defects, is permitted to be used only for members or details whose failure will not reduce the strength of the structure, either locally or overall. Such use shall be subject to the approval of the EOR.

User Note: Unidentified steel may be used for details where the precise mechanical properties and weldability are not of concern. These are commonly curb plates, shims, and other similar pieces.

337 1d. Rolled Heavy Shapes

338 339 ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 340 mm) are considered to be rolled heavy shapes. Rolled heavy shapes used as members subject to primary (computed) tensile forces due to tension or flexure 341 342 and spliced or connected using complete-joint-penetration groove welds that fuse through the thickness of the flange or the flange and the web, shall be 343 344 specified as follows. The structural design documents shall require that such shapes be supplied with Charpy V-notch (CVN) impact test results in accord-345 346 ance with ASTM A6/A6M, Supplementary Requirement S30, Charpy V-Notch Impact Test for Structural Shapes-Alternate Core Location. The im-347 348 pact test shall meet a minimum average value of 20 ft-lbf (27 J) absorbed en-349 ergy at a maximum temperature of $+70^{\circ}F$ ($+21^{\circ}C$).

The requirements in this section do not apply if the splices and connections are made by bolting. Where a rolled heavy shape is welded to the surface of another shape using groove welds, the requirements apply only to the shape that has weld metal fused through the cross section.

User Note: Additional requirements for rolled heavy-shape welded joints are given in Sections J1.5, J1.6, J2.6, and M2.2.

359 1e. Built-Up Heavy Shapes

Built-up cross sections consisting of plates with a thickness exceeding 2 in. (50 361 mm) are considered built-up heavy shapes. Built-up heavy shapes used as 362 363 members subject to primary (computed) tensile forces due to tension or flexure 364 and spliced or connected to other members using complete-joint-penetration 365 groove welds that fuse through the thickness of the plates, shall be specified as follows. The structural design documents shall require that the steel be sup-366 plied with Charpy V-notch impact test results in accordance with ASTM 367 A6/A6M, Supplementary Requirement S5, Charpy V-Notch Impact Test. The 368 impact test shall be conducted in accordance with ASTM A673/A673M, Fre-369 370 quency P, and shall meet a minimum average value of 20 ft-lbf (27 J) absorbed 371 energy at a maximum temperature of +70°F (+21°C).

372 373 374 375 376 377 378 379 380 381 382 383 384 385	2.	 When a built-up heavy shape is welded to the face of another member using groove welds, these requirements apply only to the shape that has weld metal fused through the cross section. User Note: Additional requirements for built-up heavy-shape welded joints are given in Sections J1.5, J1.6, J2.6, and M2.2. Steel Castings and Forgings Steel castings and forgings shall conform to an ASTM standard intended for structural applications and shall provide strength, ductility, weldability, and toughness adequate for the purpose. Test reports produced in accordance with the ASTM reference standards shall constitute sufficient evidence of conform-
386 387		ity with such standards.
388	3.	Bolts, Washers, and Nuts
389 390 391		Bolt, washer, and nut material conforming to one of the following ASTM stand- ards is approved for use under this Specification:
392		
393		User Note: ASTM F3125/F3125M is an umbrella standard that incorporates
394 395		Grades A325, A325M, A490, A490M, F1852, and F2280, which were previously separate standards.
396		ously separate standards.
397		(a) Bolts
398		ASTM A307
399		ASTM A354
400		ASTM A449
401 402		ASTM F3043
402		ASTM F3111 ASTM F3125/F3125M
404		ASTM F3148
405		
406		(b) Nuts
407		ASTM A194/A194M
408		ASTM A563/A563M
409		
410 411		(c) Washers
412		ASTM F436/F436M
413		ASTM F844
414		
415		(d) Compressible-Washer-Type Direct Tension Indicators
416		ASTM F959/F959M
417		
418		Manufacturer's certification shall constitute sufficient evidence of conformity
419 420		with the standards.
420	4.	Anchor Rods and Threaded Rods
422	т.	Andres Roug and Entervol Roug
423		Anchor rod and threaded rod material conforming to one of the following
424		ASTM standards is approved for use under this Specification:
425		
426		ASTM A36/A36M
427		ASTM A193/A193M

428		ASTM A354
429		ASTM A449
430		ASTM A572/A572M
431		ASTM A588/A588M
432		ASTM F1554
433		
434		User Note: ASTM F1554 is the preferred material specification for anchor
435 436		rods.
437		ASTM A449 material is permitted for high-strength anchor rods and threaded
438		rods of any diameter.
439		,
440		Threads on anchor rods and threaded rods shall conform to Class 2A, Unified
441		Coarse Thread Series of ASME B1.1, except for anchor rods over 1 in. diameter
442		which are permitted to conform to Class 2A, 8UN Thread Series.
443		
444 445		Manufacturer's certification shall constitute sufficient evidence of conformity with the standards.
44 <i>5</i> 446		with the standards.
447	5.	Consumables for Welding
448	0.	
449		Filler metals and fluxes shall conform to one of the following specifications of
449		the American Welding Society:
451		AWS A5.1/A5.1M
452		AWS A5.5/A5.5M
453 454		AWS A5.17/A5.17M AWS A5.18/A5.18M
455		AWS A5.10/A5.10M AWS A5.20/A5.20M
456		AWS A5.23/A5.23M
457		AWS A5.25/A5.25M
458		AWS A5.26/A5.26M
459		AWS A5.28/A5.28M
460		AWS A5.29/A5.29M
461		AWS A5.32/A5.32M
462		Manufastura's and fraction shall an attenda and fractional and fractions
463 464		Manufacturer's certification shall constitute sufficient evidence of conformity with the standards.
465		with the standards.
466	6.	Headed Stud Anchors
467		
468		Steel headed stud anchors shall conform to the requirements of the Structural
469		Welding Code—Steel (AWS D1.1/D1.1M).
470		
471		Manufacturer's certification shall constitute sufficient evidence of conformity
472		with AWS D1.1/D1.1M.
473 474	A4.	STDUCTUDAL DESIGN DOCUMENTS AND SDECIFICATIONS
474 475	A4.	STRUCTURAL DESIGN DOCUMENTS AND SPECIFICATIONS
475 476		Structural design documents and specifications issued for construction of all
470		or a portion of the work shall be clearly legible and drawn to an identified scale
478		that is appropriate to clearly convey the information.
479		11 F
480		1. Structural Design Documents and Specifications Issued for
481		Construction
482		

483 484	Structural design documents and specifications shall be based on the consideration of the design loads, forces, and deformations to be resisted
485	by the structural frame in the completed project and give the following
486	information, as applicable, to define the scope of the work to be fabri-
487	cated and erected:
488	
489	(a) Information as required by the applicable building code
490	(b) Statement of the method of design used: LRFD or ASD
491	(c) The section, size, material grade, and location of all members
492	
492	(d) All geometry and work points necessary for layout(e) Column base, floor, and roof elevation
494	(f) Column centers and offsets
495	(g) Identification of the lateral force-resisting system and connecting di-
496	aphragm elements that provide for lateral strength and stability in the
497	completed structure
498	(h) Design provisions for initial imperfections, if different than specified
499	in Chapter C for stability design
500	(i) Fabrication and erection tolerances not included in or different from
501	the Code of Standard Practice
502	(j) Any special erection conditions or other considerations that are re-
503	quired by the design concept, such as identification of a condition
504	when the structural steel frame in the fully erected and fully con-
505	nected state requires interaction with nonstructural steel elements for
506	strength or stability, the use of shores, jacks, or loads that must be
507	adjusted as erection progresses to set or maintain camber, position
508	within specified tolerances, or prestress
509	(k) Preset elevation requirements, if any, at free ends of cantilevered
510	members relative to their fixed-end elevations
511	(1) Column differential shortening information, including performance
512	requirements for monitoring and adjusting for column differential
513	shortening
514	(m) Requirements for all connections and member reinforcement
515	(n) Joining requirements between elements of built-up members
516	(o) Camber requirements for members, including magnitude, direction,
517	and location
518	(p) Requirements for material grade, size, capacity, and detailing of steel
519	headed stud anchors as specified in Chapter I
520	(q) Anticipated deflections and the associated loading conditions for ma-
520	jor structural elements (such as transfer girders and trusses) that sup-
522	port columns and hangers
523	(r) Requirements for openings in structural steel members for other
523	trades
525	(s) Shop painting and surface preparation requirements as required for
525 526	the design of bolted connections
520 527	(t) Requirements for approval documents in addition to what is specified
528	in the Code of Standard Practice Section 4
529 530	(u) Charpy V-notch toughness (CVN) requirements for rolled heavy
530 521	shapes or built-up heavy shapes, if different than what is required in
531	Section A3
532	(v) Identification of members and joints subjected to fatigue
533	(w) Identification of members and joints requiring nondestructive testing
534	in addition to what is required in Chapter N
535	(x) Additional project requirements, as deemed appropriate by the engi-
536	neer of record (EOR), that impact the life safety of the structure
A 177	

537

538		User Note: According to the Code of Standard Practice Section 3, it is
539		permitted in the structural design documents and specifications to refer to
540		architectural and mechanical/electrical/plumbing design documents for
541		some information as required in this section.
542		
		William standard start sourcesting design in defended the design desce
543		When structural steel connection design is delegated, the design docu-
544		ments and specifications shall include:
545		
546		(a) Design requirements for the delegated design
547		(b) Requirements for substantiating connection information
		(b) Requirements for substantiating connection information
548		
549		User Note: For projects that require consideration of seismic provisions,
550		additional requirements for information to be shown on the structural de-
551		sign documents and specifications are contained in Section A4 of the
552		AISC Seismic Provisions for Structural Steel Buildings. For safety-related
553		steel structures for nuclear facilities, additional requirements for infor-
554		mation to be shown are contained in ANSI/AISC N690 Section NA4.
555		
556		User Note: The intent of the information required to be shown on design
557		documents issued for construction as identified in Section A4 is to ensure
558		
		that these items are documented and addressed by the EOR prior to con-
559		struction. Some information may be contained in deferred submittals pre-
560		pared by a specialty structural engineer and approved by the registered
561		design professional in responsible charge. Additional information regard-
562		ing design documents and submittals pertaining to metal buildings and
563		steel joists can be found in the Common Industry Practices published by
564		the Metal Building Manufacturers Association (MBMA) and the Code of
565		Standard Practice published by the Steel Joist Institute (SJI), respectively.
566		Steel (open-web) joists and steel joist girders are not structural steel per
567		the AISC Code of Standard Practice Section 2.2 and therefore fall outside
568		the scope of this Specification.
		the scope of this specification.
569		
570		2. Structural Design Documents and Specifications Issued for Any Pur-
571		pose
572		
573		Structural design documents and specifications shall be clearly identified
574		by the EOR with the intended purpose and date of issuance before being
		by the BOR with the intended purpose and date of issuance before being
575		released by any party for the purpose of bidding or as the basis for a con-
576		tract.
577		
578		User Note: The terminology now used in this Specification and the Code
579		of Standard Practice is that structural design documents and specifica-
580		tions are "issued" by the EOR for a designated purpose as shown in the
581		documents and "released" by any other party to a contract (e.g., owner,
582		general contractor, construction manager, etc.). The documents that are
583		released must be labeled with the EOR's purpose and date of issuance.
584		
585	A5.	APPROVALS
	113.	
586		
587		The engineer of record (EOR) or registered design professional in responsible
588		charge, as applicable, shall require submission of approval documents and
589		shall review and approve, reject, or provide review comments on the approval
590		documents.
591		
571		

User Note: Submittal documents prepared by a specialty structural engineer for metal buildings and for steel joists and joist girders is commonly accepted practice, provided it is approved by the authority having jurisdiction.

592

593

594

595 596

597

598

599

600

601 602

603

604 605

606 607

608

When structural steel connection design is delegated to a licensed engineer working with the fabricator, the EOR shall require submission of the substantiating connection information and shall review the information submitted for compliance with the information requested. The review shall confirm the following:

- (a) The substantiating connection information has been prepared by a licensed engineer
- (b) The substantiating connection information conforms to the design documents and specifications
- (c) The connection design work conforms to the design intent of the EOR on the overall project

User Note: Communication requirements among the parties involved in the approval process are discussed in the AISC *Code of Standard Practice* Section 4. The Commentary to Section 4. 1 recommends that a pre-detailing conference be held to facilitate good communication among the parties regarding the engineer's design intent, requests for information (RFI), and the approval documents required for a project.

CHAPTER B

2

1

3

8 9

10

11

12

13

14

15

17

32

37

DESIGN REQUIREMENTS

4 This chapter addresses general requirements for the design of steel structures appli-5 cable to all chapters and appendices of this Specification.

67 The chapter is organized as follows:

- B1. General Provisions
- B2. Loads and Load Combinations
- B3. Design Basis
- B4. Member Properties
- B5. Fabrication and Erection
- B6. Quality Control and Quality Assurance
- B7. Evaluation of Existing Structures
- 16 B8. Dimensional Tolerances
- 18 B1. GENERAL PROVISIONS
- 19The design of members and connections shall be consistent with the intended20behavior of the structural system and the assumptions made in the structural21analysis.

22 B2. LOADS AND LOAD COMBINATIONS

The loads, nominal loads, and load combinations shall be those stipulated by
 the applicable building code. In the absence of a building code, the loads, nom inal loads, and load combinations shall be those stipulated in *Minimum Design Loads and Associated Criteria for Buildings and Other Structures* (ASCE/SEI
 7).

User Note: When using ASCE/SEI 7 for design according to Section B3.1
 (LRFD), the load combinations in ASCE/SEI 7 Section 2.3 apply. For design,
 according to Section B3.2 (ASD), the load combinations in ASCE/SEI 7 Sec tion 2.4 apply.

33 **B3. DESIGN BASIS**

34Design shall be such that no applicable strength or serviceability limit state35shall be exceeded when the structure is subjected to all applicable load combi-36nations.

Design for strength shall be performed according to the provisions for load and
 resistance factor design (LRFD) or to the provisions for allowable strength de sign (ASD).

42 User Note: The term "design," as used in this Specification, is defined in the 43 Glossary.

44 1. Design for Strength Using Load and Resistance Factor Design (LRFD)45

46 Design according to the provisions for load and resistance factor design 47 (LRFD) satisfies the requirements of this Specification when the design 48 strength of each structural component equals or exceeds the required strength

	determined on the basis of the LRFD load combinations. All provisions of this Specification, except for those in Section B3.2, shall apply.
	Design shall be performed in accordance with Equation B3-1:
	$R_u \le \phi R_n \tag{B3-1}$
	where
	R_u = required strength using LRFD load combinations
	R_n = nominal strength
	ϕ = resistance factor
	$\phi R_n = \text{design strength}$
	f
	The nominal strength, R_n , and the resistance factor, ϕ , for the applicable limit
	states are specified in Chapters D through K.
2.	Design for Strength Using Allowable Strength Design (ASD)
	Design according to the provisions for allowable strength design (ASD) satis-
	fies the requirements of this Specification when the allowable strength of each
	structural component equals or exceeds the required strength determined on
	the basis of the ASD load combinations. All provisions of this Specification,
	except those of Section B3.1, shall apply.
	Design shall be norfermed in accordance with Equation D2 2:
	Design shall be performed in accordance with Equation B3-2:
	$R_a \le \frac{R_n}{\Omega} \tag{B3-2}$
	where
	R_a = required strength using ASD load combinations
	R_n = nominal strength
	Ω = safety factor
	R_n/Ω = allowable strength
	The nominal strength, R_n , and the safety factor, Ω , for the applicable limit
	states are specified in Chapters D through K.
	(A)
3.	Required Strength
	The manifold structure of the forest and an in the state of the little structure of the state of the structure of the structu
	The required strength of structural members and connections shall be deter-
	mined by structural analysis for the applicable load combinations, as stipulated in Section B2.
	Design by elastic or inelastic analysis is permitted. Requirements for analysis
	are stipulated in Chapter C and Appendix 1.
4.	Design of Connections and Supports
	Connection elements shall be designed in accordance with the provisions of
	Chapters J and K. The forces and deformations used in design of the connec-
	tions shall be consistent with the intended performance of the connection and
	the assumptions used in the design of the structure. Self-limiting inelastic de-
	3.

91 92 93 94 95 96 97 formations of the connections are permitted.

At points of support, beams, girders, and trusses shall be restrained against rotation about their longitudinal axis unless it can be shown by analysis that the restraint is not required.

User Note: *Code of Standard Practice* Section 3.1.2 addresses communication of necessary information for the design of connections.

105 4a. Simple Connections

A simple connection transmits a negligible moment. In the analysis of the structure, simple connections may be assumed to allow unrestrained relative rotation between the framing elements being connected. A simple connection shall have sufficient rotation capacity to accommodate the required rotation determined by the analysis of the structure.

113 4b. Moment Connections

Two types of moment connections, fully restrained and partially restrained, are permitted, as specified below.

(a) Fully Restrained (FR) Moment Connections

A fully restrained (FR) moment connection transfers moment with a negligible rotation between the connected members. In the analysis of the structure, the connection may be assumed to allow no relative rotation. An FR connection shall have sufficient strength and stiffness to maintain the initial angle between the connected members at the strength limit states.

(b) Partially Restrained (PR) Moment Connections

Partially restrained (PR) moment connections transfer moments, but the relative rotation between connected members is not negligible. In the analysis of the structure, the moment-rotation response characteristics of any PR connection shall be included. The response characteristics of the PR connection shall be based on the technical literature or established by analytical or experimental means. The component elements of a PR connection shall have sufficient strength, stiffness, and deformation capacity such that the moment-rotation response can be realized up to and including the required strength of the connection.

136 5. Design of Diaphragms and Collectors

Diaphragms and collectors shall be designed for forces that result from loads, as stipulated in Section B2. They shall be designed in conformance with the provisions of Chapters C through K, as applicable.

142 6. Design of Anchorages to Concrete

Anchorage between steel and concrete acting compositely shall be designed in accordance with Chapter I. The design of column bases, and anchor rods shall be in accordance with Chapter J.

148 7. Design for Stability

150The structure and its elements shall be designed for stability in accordance with151Chapter C.

152	0	Design for Somional liter
153	8.	Design for Serviceability
154		
155		The overall structure and the individual members and connections shall be
156		evaluated for serviceability limit states in accordance with Chapter L.
157 158	9.	Decign for Structural Integrity
158	9.	Design for Structural Integrity
160		When design for structural integrity is required by the applicable building
161		code, the requirements in this section shall be met.
162		
163		(a) Column splices shall have a nominal tensile strength equal to or greater
164		than $D + L$ for the area tributary to the column between the splice and the
165		splice or base immediately below,
166		where
167		D = nominal dead load, kips (N)
168		L = nominal live load, kips (N)
169		E nominar rive road, kips (14)
		(b) Deem and sinder and converting shall have a minimum demind and
170		(b) Beam and girder end connections shall have a minimum nominal axial
171		tensile strength equal to (i) two-thirds of the required vertical shear
172		strength for design according to Section B3.1 (LRFD) or (ii) the required
173		vertical shear strength for design according to Section B3.2 (ASD), but
174		not less than 10 kips in either case.
175		
176		(c) End connections of members bracing columns shall have a nominal tensile
177		strength equal to or greater than (i) 1% of two-thirds of the required col-
178		umn axial strength at that level for design according to Section B3.1
179		(LRFD) or (ii) 1% of the required column axial strength at that level for
180		design according to Section B3.2 (ASD).
181		
182		The strength requirements for structural integrity in this section shall be eval-
183		uated independently of other strength requirements. For the purpose of satis-
184		fying these requirements, bearing bolts in connections with short-slotted holes
185		parallel to the direction of the tension force and inelastic deformation of the
186		connection are permitted.
100		connection are permitted.
187	10.	Design for Ponding
188	10.	Design for Fonding
189		The roof system shall be investigated through structural analysis to ensure sta-
190		bility and strength under ponding conditions unless the roof surface is config-
191		ured to prevent the accumulation of water.
192		····· ··· ··· ··· ··· ···· ···· ····
193		Ponding stability and strength analysis shall consider the effect of the deflec-
194		tions of the roof's structural framing under all applicable loads present at the
195		onset of ponding and the subsequent accumulation of rainwater and snowmelt.
196		
197		The nominal strength and resistance or safety factors for the applicable limit
198		states are specified in Chapters D through K.
199		· · ·
200	11.	Design for Fatigue
201		

Design of Mmembers and their connections shall consider fatigue in accordance with Appendix 3. Fatigue need not be considered for seismic effects or for the effects of wind loading on typical building lateral force-resisting systems and building enclosure components.

207 13. Design for Corrosion Effects

202

203

204

205

206

208 209

210

211

212

214 215

216

217 218

219 220

221

222 223

224 225

226

227 228

229

230

231

232

238

240 241

242

243

244

245

246

Where corrosion could impair the strength or serviceability of a structure, structural components shall be designed to tolerate corrosion or shall be protected against corrosion.

213 12. Design for Fire Conditions

Design for fire conditions shall satisfy the requirements stipulated in Appendix 4.

Two methods of design for fire conditions are provided in Appendix 4: (a) by analysis and (b) by qualification testing. Compliance with the fire-protection requirements in the applicable building code shall be deemed to satisfy the requirements of Appendix 4.

User Note: Design by qualification testing is the prescriptive method specified in most building codes. Traditionally, on most projects where the architect is the prime professional, the architect has been the responsible party to specify and coordinate fire protection requirements. Design by analysis is a newer engineering approach to fire protection. Designation of the person(s) responsible for designing for fire conditions is a contractual matter to be addressed on each project. This section is not intended to create or imply a contractual requirement for the engineer of record responsible for the structural design or any other member of the design team.

233 13. Design for Corrosion Effects

Where corrosion could impair the strength or serviceability of a structure,
 structural components shall be designed to tolerate corrosion or shall be pro tected against corrosion.

237 **B4. MEMBER PROPERTIES**

239 1. Classification of Sections for Local Buckling

For members subject to axial compression, sections are classified as nonslender-element or slender-element sections. For a nonslender-element section, the width-to-thickness ratios of its compression elements shall not exceed λ_r from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

247For members subject to flexure, sections are classified as compact, noncompact248or slender-element sections. For all sections addressed in Table B4.1b, flanges249must be continuously connected to the web or webs. For a section to qualify250as compact, the width-to-thickness ratios of its compression elements shall not251exceed the limiting width-to-thickness ratios, λ_p , from Table B4.1b. If the252width-to-thickness ratio of one or more compression elements exceeds λ_p , but253does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-

For cases where the web and flange are not continuously attached, consideration of element slenderness must account for the unattached length of the elements and the appropriate plate buckling boundary conditions.

User Note: The Commentary discusses element slenderness when web and flange are not continuously attached.

264 1a. Unstiffened Elements

For unstiffened elements supported along only one edge parallel to the direction of the compression force, the width shall be taken as follows:

- (a) For flanges of I-shaped members and tees, the width, b_i is one-half the full-flange width, b_i .
- (b) For legs of angles and flanges of channels and zees, the width, *b*, is the full leg or flange width.
- (c) For plates, the width, *b*, is the distance from the free edge to the first row of fasteners or line of welds.
- (d) For stems of tees, *d* is the full depth of the section.

User Note: Refer to Table B4.1 for the graphic representation of unstiffened element dimensions.

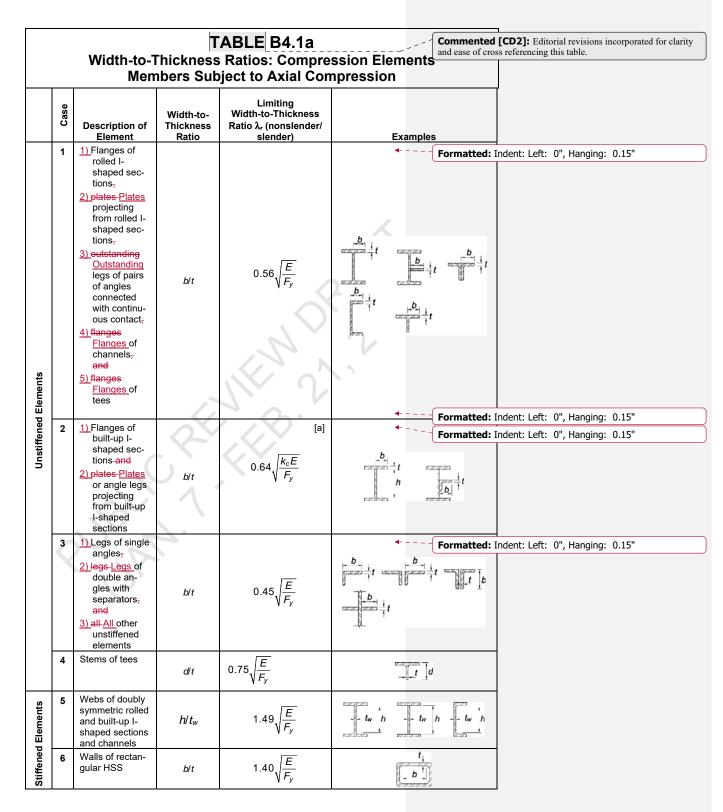
1b. Stiffened Elements

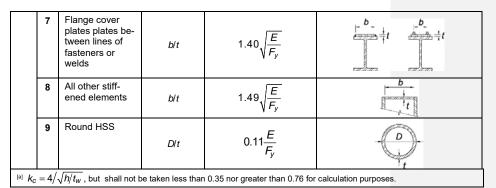
For stiffened elements supported along two edges parallel to the direction of the compression force, the width shall be taken as follows:

- (a) For webs of rolled sections, h is the clear distance between flanges less the fillet at each flange; h_c is twice the distance from the centroid to the inside face of the compression flange less the fillet or corner radius.
- (b) For webs of built-up sections, h is the distance between adjacent lines of fasteners or the clear distance between flanges when welds are used, and h_c is twice the distance from the centroid to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used; h_p is twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange when welds are used; h_p is twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used.
- (c) For flange plates in built-up sections, the width, *b*, is the distance between adjacent lines of fasteners or lines of welds.
- (d) For flanges of rectangular hollow structural sections (HSS), the width, b, is the clear distance between webs less the inside corner radius on each side. For webs of rectangular HSS, h is the clear distance between the flanges less the inside corner radius on each side. If the corner radius is not known, b and h shall be taken as the corresponding outside dimension minus three times the thickness. The thickness, t, shall be taken as the design wall thickness, per Section B4.2.

- (e) For flanges or webs of box sections and other stiffened elements, the width, *b*, is the clear distance between the elements providing stiffening.
- (f) For perforated cover plates, *b* is the transverse distance between the nearest line of fasteners, and the net area of the plate is taken at the widest hole.
- (g) For round hollow structural sections (HSS), the width shall be taken as the outside diameter, *D*, and the thickness, *t*, shall be taken as the design wall thickness, as defined in Section B4.2.

User Note: Refer to Table B4.1 for the graphic representation of stiffened element dimensions.

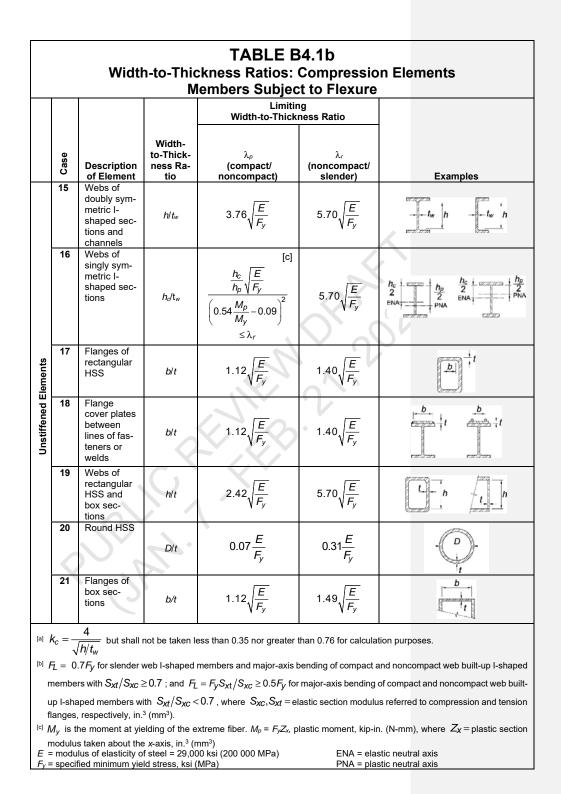

For tapered flanges of rolled sections, the thickness is the nominal value halfway between the free edge and the corresponding face of the web.


328 2. Design Wall Thickness for HSS329

330The design wall thickness, t, shall be used in calculations involving the wall331thickness of hollow structural sections (HSS). The design wall thickness, t,332shall be taken equal to the nominal thickness for box sections and HSS pro-333duced according to ASTM A1065/A1065M or ASTM A1085/A1085M. For334HSS produced according to other standards approved for use under this Spec-335ification, the design wall thickness, t, shall be taken equal to 0.93 times the336nominal wall thickness.

User Note: A pipe can be designed using the provisions of this Specification for round HSS sections as long as the pipe conforms to ASTM A53/A53M Grade B and the appropriate limitations of this Specification are used.

PUBL' 7



342

		Width-t				on Elements e
	Case	Description of Element	Width- to-Thick- ness Ra- tio		niting nickness Ratio λ _r (noncompact/ slender)	Examples
	10	 Flanges of rolled I- shaped sections Flanges of r channels, and Flanges of tees 	b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$	Formatted: Indent: Left: 0", Hanging: 0.15"
Unstiffened Elements	11	Flanges of doubly and singly symmet- ric I-shaped built-up sec- tions	b/t	$0.38\sqrt{\frac{E}{F_y}}$	[a] [b] $0.95 \sqrt{\frac{k_c E}{F_L}}$	$\frac{ \underline{b}_{1} }{ \underline{b}_{1} } = \frac{1}{t} t \qquad \frac{ \underline{b}_{1} }{ \underline{b}_{1} } = \frac{1}{t} t$
	12	Legs of single angles	b/t	$0.54\sqrt{\frac{E}{F_y}}$	$0.91\sqrt{\frac{E}{F_y}}$	
	13	Flanges of all I-shaped sec- tions and channels in flexure about the minor axis	b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$	
	14	Stems of tees	d/t	$0.84\sqrt{\frac{E}{F_y}}$	$1.52\sqrt{\frac{E}{F_y}}$	

343 344

B-11

347		
348	3.	Gross and Net Area Determination
349		
350	3a.	Gross Area
351		
352		The gross area, A_g , of a member is the total cross-sectional area.
353		
354	3b.	Net Area
355		
356		The net area, A_n , of a member is the sum of the products of the thickness and
357		the net width of each element computed as follows:
358		the net what of each element compared as follows.
359		In computing net area for tension and shear, the width of a bolt hole shall be
360		taken as $1/16$ in. (2 mm) greater than the nominal dimension of the hole.
361		taken as 1/10 m. (2 mm) greater than the hommat dimension of the hore.
362		For a chain of bolt holes extending across a part in any diagonal or zigzag line,
363		the net width of the part shall be obtained by deducting from the gross width
364		the sum of the diameters or slot dimensions as provided in this section, of all
365		holes in the chain, and adding, for each gage space in the chain, the quantity
366		$s^2/4g$,
367		
368		where
369		g = transverse center-to-center spacing (gage) between fastener gage
370		lines, in. (mm)
371		s = longitudinal center-to-center spacing (pitch) of any two consecutive
372		bolt holes, in. (mm)
373		
374		For angles, the gage for bolt holes in opposite adjacent legs shall be the sum
375		of the gages from the back of the angles less the thickness.
376		
377		For slotted HSS welded to a gusset plate, the net area, A_n , is the gross area
378		minus the product of the thickness and the total width of material that is re-
379		moved to form the slot.
380		
381		In determining the net area across plug or slot welds, the weld metal shall not
382		be considered as adding to the net area.
383		
384		For members without holes, the net area, A_n , is equal to the gross area, A_g .
385		
386	B5.	FABRICATION AND ERECTION
387		
388		Fabrication, shop painting, and erection shall satisfy the requirements stipu-
389		lated in Chapter M.
390		
391		User Note: Code of Standard Practice Section 4 addresses requirements for
392		fabrication and erection documents and Section 4.4 addresses the approval pro-
393		cess for approval documents.
394		
	D/	OUALITY CONTROL AND OUALITY ACCUDANCE
395	B6.	QUALITY CONTROL AND QUALITY ASSURANCE
396		
397		Quality control and quality assurance activities shall satisfy the requirements
398		stipulated in Chapter N.
399		
400	B7.	EVALUATION OF EXISTING STRUCTURES
100	D/1	ETALOATION OF EASTING STRUCTURES
		Specification for Structural Steel Buildings vy 2022

402 The evaluation of existing structures shall satisfy the requirements stipulated
403 in Appendix 5.

405 **B8. DIMENSIONAL TOLERANCES**

407The provisions in this Specification are based on the assumption that dimen-408sional tolerances provided in the Code of Standard Practice, and in the ASTM409standards provided in Section A3.1a, are satisfied. Where larger tolerances are410permitted, the effects of such tolerances shall be considered.

411

401

406

PUBLICA. HER. 24. 202

CHAPTER C

DESIGN FOR STABILITY

This chapter addresses requirements for the design of structures for stability. The direct analysis method is presented herein.

The chapter is organized as follows:

C1. General Stability Requirements

C2. Calculation of Required Strengths

C3. Calculation of Available Strengths

User Note: Alternative methods for the design of structures for stability are provided in Appendices 1 and 7. Appendix 1 provides alternatives that allow consideration of member imperfections and/or inelasticity directly within the analysis and provides for a more detailed evaluation of the limit states. Appendix 7 provides the effective length method and a first-order elastic method.

19 C1. GENERAL STABILITY REQUIREMENTS

Stability shall be provided for the structure as a whole and for each of its elements. The effects of all of the following on the stability of the structure and its elements shall be considered: (a) flexural, shear and axial member deformations, and all other component and connection deformations that contribute to the displacements of the structure; (b) second-order effects (including $P-\Delta$ and $P-\delta$ effects); (c) geometric imperfections; (d) stiffness reductions due to inelasticity, including the effect of partial yielding of the cross section which may be accentuated by the presence of residual stresses; and (e) uncertainty in system, member, and connection strength and stiffness. All load-dependent effects shall be calculated at a level of loading corresponding to LRFD load combinations or 1.6 times ASD load combinations.

Any rational method of design for stability that considers all of the listed effects is permitted; this includes the methods identified in Sections C1.1 and C1.2.

User Note: See Commentary Section C1 and Table C-C1.1 for an explanation of how requirements (a) through (e) of Section C1 are satisfied in the methods of design listed in Sections C1.1 and C1.2.

41 1. Direct Analysis Method of Design

The direct analysis method of design is permitted for all structures, and can be based on either elastic or inelastic analysis. For design by elastic analysis, required strengths shall be calculated in accordance with Section C2 and the calculation of available strengths in accordance with Section C3. For design by advanced analysis, the provisions of Section 1.1 and Sections 1.2 or 1.3 of Appendix 1 shall be satisfied.

1

2 3 4

5

6 7

8 9

10

11

12

18

20 21

22

23

24

25

26 27

28 29

30

31 32 33

34

35

36 37

38

39

40

42 43

44 45

46

47

48 49

2. Alternative Methods of Design

The effective length method and the first-order analysis method, both defined in Appendix 7, are based on elastic analysis and are permitted as alternatives to the direct analysis method for structures that satisfy the limitations specified in that appendix.

57 C2. CALCULATION OF REQUIRED STRENGTHS

For the direct analysis method of design, the required strengths of components of the structure shall be determined from an elastic analysis conforming to Section C2.1. The analysis shall include consideration of initial imperfections in accordance with Section C2.2 and adjustments to stiffness in accordance with Section C2.3.

1. General Analysis Requirements

The analysis of the structure shall conform to the following requirements:

- (a) The analysis shall consider flexural, shear, and axial member deformations, and all other component and connection deformations that contribute to displacements of the structure. The analysis shall incorporate reductions in all stiffnesses that are considered to contribute to the stability of the structure, as specified in Section C2.3.
- (b) The analysis shall be a second-order analysis that considers both $P-\Delta$ and $P-\delta$ effects, except that it is permissible to neglect the effect of $P-\delta$ on the response of the structure when the following conditions are satisfied: (1) the structure supports gravity loads primarily through nominally vertical columns, walls or frames; (2) the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7; and (3) no more than one-third of the total gravity load on the structure is supported by columns that are part of moment-resisting frames in the direction of translation being considered. It is necessary in all cases to consider $P-\delta$ effects in the evaluation of individual members subject to compression and flexure.

User Note: A *P*- Δ -only second-order analysis (one that neglects the effects of *P*- δ on the response of the structure) is permitted under the conditions listed. In this case, the requirement for considering *P*- δ effects in the evaluation of individual members can be satisfied by applying the *B*₁ multiplier defined in Appendix 8, Section 8.1.2, to the required flexural strength of the member.

Use of the approximate method of second-order analysis provided in Appendix 8, Section 8.1, is permitted.

(c) The analysis shall consider all gravity and other applied loads that may influence the stability of the structure.

User Note: It is important to include in the analysis all gravity loads, including loads on leaning columns and other elements that are not part of the lateral force-resisting system.

- (d) For design by LRFD, the second-order analysis shall be carried out under LRFD load combinations. For design by ASD, the second-order analysis shall be carried out under 1.6 times the ASD load combinations, and the results shall be divided by 1.6 to obtain the required strengths of components.
- 112 2. Consideration of Initial System Imperfections

106

107

108

109

110

111

113 114

115

116

117 118

130

132

146

155

The effect of initial imperfections in the position of points of intersection of members on the stability of the structure shall be taken into account either by direct modeling of these imperfections in the analysis as specified in Section C2.2a or by the application of notional loads as specified in Section C2.2b.

User Note: The imperfections required to be considered in this section are 119 120 imperfections in the locations of points of intersection of members (system 121 imperfections). In typical building structures, the important imperfection of 122 this type is the out-of-plumbness of columns. Consideration of initial out-of-123 straightness of individual members (member imperfections) is not required in 124 the structural analysis when using the provisions of this section; it is accounted 125 for in the compression member design provisions of Chapter E and need not be considered explicitly in the analysis as long as it is within the limits speci-126 127 fied in the Code of Standard Practice. Appendix 1, Section 1.2, provides an 128 extension to the direct analysis method that includes modeling of member im-129 perfections (initial out-of-straightness) within the structural analysis.

131 2a. Direct Modeling of Imperfections

In all cases, it is permissible to account for the effect of initial system imperfections by including the imperfections directly in the analysis. The structure shall be analyzed with points of intersection of members displaced from their nominal locations. The magnitude of the initial displacements shall be the maximum amount considered in the design; the pattern of initial displacements shall be such that it provides the greatest destabilizing effect.

140User Note: Initial displacements similar in configuration to both displace-141ments due to loading and anticipated buckling modes should be considered in142the modeling of imperfections. The magnitude of the initial displacements143should be based on permissible construction tolerances, as specified in the144*Code of Standard Practice* or other governing requirements, or on actual im-145perfections if known.

In the analysis of structures that support gravity loads primarily through nom-147 inally vertical columns, walls or frames, where the ratio of maximum second-148 order story drift to maximum first-order story drift (both determined for LRFD 149 load combinations or 1.6 times ASD load combinations, with stiffnesses ad-150 justed as specified in Section C2.3) in all stories is equal to or less than 1.7, it 151 152 is permissible to include initial system imperfections in the analysis for grav-153 ity-only load combinations and not in the analysis for load combinations that 154 include applied lateral loads.

156 **2b.** Use of Notional Loads to Represent Imperfections

157
158 For structures that support gravity loads primarily through nominally vertical
159 columns, walls, or frames, it is permissible to use notional loads to represent
160 the effects of initial system imperfections in the position of points of intersec161 tion of members in accordance with the requirements of this section. The

162 163 164	notional load shall be applied to a model of the structure based on its nominal geometry.
165 166 167 168 169 170	User Note: In general, the notional load concept is applicable to all types of structures and to imperfections in the positions of both points of intersection of members and points along members, but the specific requirements in Sections C2.2b(a) through C2.2b(d) are applicable only for the particular class of structure and type of system imperfection identified here.
170 171 172 173 174 175	(a) Notional loads shall be applied as lateral loads at all levels. The no- tional loads shall be additive to other lateral loads and shall be applied in all load combinations, except as indicated in Section C2.2b(d). The magnitude of the notional loads shall be:
175 176 177	$N_i = 0.002\alpha Y_i \tag{C2-1}$
178 179 180 181 182	where $\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD) N_i = notional load applied at level <i>i</i> , kips (N) Y_i = gravity load applied at level <i>i</i> from the LRFD load combination or ASD load combination, as applicable, kips (N)
183 184 185 186 187 188 189 190 191	User Note: The use of notional loads can lead to additional (generally small) fictitious base shears in the structure. The correct horizontal reactions at the foundation may be obtained by applying an additional horizontal force at the base of the structure, equal and opposite in direction to the sum of all notional loads, distributed among vertical load-carrying elements in the same proportion as the gravity load supported by those elements. The notional loads can also lead to additional overturning effects, which are not fictitious.
192 193 194 195 196 197	(b) The notional load at any level, N_i , shall be distributed over that level in the same manner as the gravity load at the level. The notional loads shall be applied in the direction that provides the greatest destabilizing effect.
198 199 200 201 202 203 204	User Note: For most building structures, the requirement regarding no- tional load direction may be satisfied as follows: for load combinations that do not include lateral loading, consider two alternative orthogonal directions of notional load application, in a positive and a negative sense in each of the two directions, in the same direction at all levels; for load combinations that include lateral loading, apply all notional loads in the direction of the resultant of all lateral loads in the combination.
205 206 207 208 209 210	(c) The notional load coefficient of 0.002 in Equation C2-1 is based on a nominal initial story out-of-plumbness ratio of 1/500; where the use of a different maximum out-of-plumbness is justified, it is permissible to adjust the notional load coefficient proportionally.
210 211 212 213 214 215 216	User Note: An out-of-plumbness of 1/500 represents the maximum tolerance on column plumbness specified in the <i>Code of Standard Practice</i> . In some cases, other specified tolerances, such as those on plan location of columns, will govern and will require a tighter plumbness tolerance.
216	

217 218 219 220 221 222 223		(d)	For structures in which the ratio of maximum second-order drift to max- imum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7, it is permissible to apply the notional load, N_i , only in gravity-only load combinations and not in combinations that include other lateral loads.
223 224 225	3.	Adju	istments to Stiffness
226 227 228			analysis of the structure to determine the required strengths of components use reduced stiffnesses, as follows:
229 230 231 232		(a)	A factor of 0.80 shall be applied to all stiffnesses that are considered to contribute to the stability of the structure. It is permissible to apply this reduction factor to all stiffnesses in the structure.
233 234 235 236 237			User Note: Applying the stiffness reduction to some members and not others can, in some cases, result in artificial distortion of the structure under load and possible unintended redistribution of forces. This can be avoided by applying the reduction to all members, including those that do not contribute to the stability of the structure.
238 239 240 241 242 243		(b)	An additional factor, the stiffness reduction parameter, τ_b , shall be applied to the flexural stiffnesses of all members whose flexural stiffnesses are considered to contribute to the stability of the structure. For noncomposite members, τ_b shall be defined as follows (see Section I1.5 for the definition of τ_b for composite members):
244 245 246			(1) When $\alpha P_r / P_{ns} \leq 0.5$
240 247 248			$\tau_b = 1.0 \tag{C2-2a}$
248 249 250			(2) When $\alpha P_{n}/P_{ns} > 0.5$
251 252			$\tau_b = 4(\alpha P_r/P_{ns}) \left[1 - (\alpha P_r/P_{ns}) \right] $ (C2-2b) where
253 254			$\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD) P_r = required axial compressive strength using LRFD or ASD load
255 256 257 258			combinations, kips (N) P_{ns} = cross-section compressive strength; for nonslender-element sections, $P_{ns} = F_y A_g$, and for slender-element sections, $P_{ns} = F_y A_e$, where A_e is as defined in Section E7 with $F_n = F_y$, kips OD
259 260 261			(N) User Note: Taken together, Sections (a) and (b) require the use of 0.8
262 263			τ_b times the nominal elastic flexural stiffness and 0.8 times other nom- inal elastic stiffnesses for structural steel members in the analysis.
264 265		(c)	In structures to which Section C2.2b is applicable, in lieu of using $\tau_b <$
266 267			1.0, where $\alpha P_r/P_{ns} > 0.5$, it is permissible to use $\tau_b = 1.0$ for all noncomposite members if a notional load of $0.001\alpha Y_i$ [where Y_i is as
268 269 270			defined in Section C2.2b(a)] is applied at all levels, in the direction specified in Section C2.2b(b), in all load combinations. These notional loads shall be added to those, if any, used to account for the effects of

271 272 273 274 275 276 277 278		 initial imperfections in the position of points of intersection of members and shall not be subject to the provisions of Section C2.2b(d). (d) Where components comprised of materials other than structural steel are considered to contribute to the stability of the structure, and the governing codes and specifications for the other materials require greater reductions in stiffness, such greater stiffness reductions shall be applied to those components. 			
279 280	C3.	CALCULATION OF AVAILABLE STRENGTHS			
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295		For the direct analysis method of design, the available strengths of members and connections shall be calculated in accordance with the provisions of Chap- ters D through K, as applicable, with no further consideration of overall struc- ture stability. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. Bracing intended to define the unbraced lengths of members shall have suffi- cient stiffness and strength to control member movement at the braced points. User Note: Methods of satisfying this bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the design of the lateral force-resisting system of the over- all structure.			
		PUBLICA FEB.			

1	CHAPTER D					
2	DESIGN OF MEMBERS FOR TENSION					
3 4	This	chapter applies to members subject to axial tension.				
5	The o	chapter is organized as follows:				
6 7 8 9 10 11 12		 D1. Slenderness Limitations D2. Tensile Strength D3. Effective Net Area D4. Built-Up Members D5. Pin-Connected Members D6. Eyebars 				
12 13 14 15 16 17 18	 User Note: For cases not included in this chapter, the following sections apply: B3.11 Members subject to fatigue Chapter H Members subject to combined axial tension and flexure J3 Threaded rods J4.1 Connecting elements in tension J4.3 Block shear rupture strength at end connections of tension members 					
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	D1.	SLENDERNESS LIMITATIONS				
		There is no maximum slenderness limit for members in tension. User Note: For members designed on the basis of tension, the slenderness ratio of the member as fabricated—taken as the fabricated length of the member divided by the least radius of gyration of the section—preferably should not exceed 300. This suggestion does not apply to rods.				
	D2.	TENSILE STRENGTH The design tensile strength, $\phi_t P_n$, and the allowable tensile strength, P_n/Ω_t , of tension members shall be the lower value obtained according to the limit states of tensile yielding in the gross section and tensile rupture in the net section.				
34 35 36		(a) For tensile yielding				
37		$P_n = F_y A_g \tag{D2-1}$				
38 39 40 41		$\phi_t = 0.90 \text{ (LRFD)}$ $\Omega_t = 1.67 \text{ (ASD)}$ (b) For tensile rupture				
42 43 44		$P_n = F_u A_e \tag{D2-2}$				
45 46 47 48 49 50		$\phi_t = 0.75 \text{ (LRFD)} \qquad \Omega_t = 2.00 \text{ (ASD)}$ where $A_e = \text{effective net area, in.}^2 \text{ (mm}^2\text{)}$ $A_g = \text{gross area of member, in.}^2 \text{ (mm}^2\text{)}$ $F_y = \text{specified minimum yield stress, ksi (MPa)}$				
		Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022				

Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

51		F_u = specified minimum tensile strength, ksi (MPa)
52		
53		Where connections use plug, slot or fillet welds in holes or slots, the effective
54		net area through the holes shall be used in Equation D2-2.
55	D1	
56	D3.	EFFECTIVE NET AREA
57 58		
58 59		The gross area, A_g , and net area, A_n , of tension members shall be determined in accordance with the provisions of Section B4.3.
60		accordance with the provisions of Section B4.5.
61		The effective net area of tension members shall be determined as
62		The effective het area of tension members shall be determined as
63		$A_e = A_n U \tag{D3-1}$
64		$A_{\ell} - A_{\eta} O \tag{D3-1}$
65		where U the cheer less factor is determined as shown in Table D2 1
66		where U , the shear lag factor, is determined as shown in Table D3.1.
67		For open cross sections such as W, M, S, C, or HP shapes, WTs, STs, and
68		single and double angles, the shear lag factor, U, need not be less than the ratio
69		of the gross area of the connected element(s) to the member gross area. This
70		provision does not apply to closed sections, such as HSS sections, nor to plates.
71		provision does not uppry to crosed sections, such as rises sections, not to places.
72	D4.	BUILT-UP MEMBERS
73	2.0	
74		For limitations on the longitudinal spacing of connectors between elements in
75		continuous contact consisting of a plate and a shape, or two plates, see Section
76		J3.5.
77		
78		Lacing, perforated cover plates, or tie plates without lacing are permitted to be
79		used on the open sides of built-up tension members. Tie plates shall have a
80		length not less than two-thirds the distance between the lines of welds or fas-
81		teners connecting them to the components of the member. The thickness of
82		such tie plates shall not be less than one-fiftieth of the distance between these
83		lines. The longitudinal spacing of intermittent welds or fasteners at tie plates
84		shall not exceed 6 in. (150 mm).
85		
86		User Note: The longitudinal spacing of connectors between components
87		should preferably limit the slenderness ratio in any component between the
88		connectors to 300.
89		

	TAI	BLE D3.1							
	Shear Lag Factors for Connections to Tension Members								
Case	Description of Element	Shear Lag Factor, U	Examples						
1	All tension members where the tension load is transmitted directly to each of the cross- sectional elements by fasteners or welds (ex- cept as in Cases 4, 5 and 6).	U = 1.0							
2	All tension members, except HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or by longitudinal welds in combination with transverse welds. Alternatively, Case 7 is permitted for W, M, S and HP shapes and Case 8 is permitted for angles.	$U = 1 - \frac{\overline{x}}{l}$							
3	All tension members where the tension load is transmitted only by transverse welds to some but not all of the cross-sectional ele-	$U = 1.0$ and $A_n =$ area of the directly							
	ments.	connected elements							
4 ^[a]	Plates, angles, channels with welds at heels, tees, and W-shapes with connected elements, where the tension load is transmitted by longitudinal welds only. See Case 2 for definition of \overline{x} .	$U = \frac{3l^2}{3l^2 + w^2} \left(1 - \frac{\bar{x}}{l}\right)$	W T Plate or connected element						
5	Round and rectangular HSS with single con- centric gusset through slots in the HSS.	$\overline{x} = \frac{R\sin\theta}{\theta} - \frac{1}{2}t_p$ $\theta \text{ in rad}$ $U = \left[1 + \left(\frac{\overline{x}}{l}\right)^{3.2}\right]^{-10}$							
	JBL A.	$\overline{x} = b - \frac{2b^2 + tH - 2t^2}{2H + 4b - 4t}$ $U = 1 - \frac{\overline{x}}{l}$							
6	Rectangular HSS with two side gusset plates.	$U = \frac{BU_B + HU_H}{H + B}$ $U_B = \frac{3l^2}{3l^2 + B^2}$ $U_H = \frac{3l^2}{3l^2 + H^2}$	H						
7	W-, M-, S- or HP- shapes, or tees cut from these shapes. (If U is calculated per Case 2, the larger value is permitted to be used.) with flange con- nected with three or more fasteners per line in the direction of loading with web connected with four or more	$b_f \ge \frac{2}{3}d, \ U = 0.90$ $b_f < \frac{2}{3}d, \ U = 0.85$	-						
	fasteners per line in the direction of load- ing	<i>U</i> = 0.70							

ſ	8	Single and double an-	with four or more		_
		gles (If <i>U</i> is calculated	fasteners per line in	<i>U</i> = 0.80	
		per Case 2, the larger value is permitted to	the direction of load- ing		
		be used.)	with three fasteners	<i>U</i> = 0.60	
		50 0000.)	per line in the direc-	0 0.00	_
			tion of loading (with		
			fewer than three fas-		
			teners per line in the direction of loading,		
			use Case 2)		
ľ	B = over	all width of rectangular l	/	d 90° to the plane of the conr	nection, in. (mm); <i>D</i> = outside
					measured in the plane of the
					ction from which the tee was
	cut, in. ((mm).	mm); $l = length of conn$	ection, in. (mm); $w = w$	idth of plate, in. (mm); $\bar{x} = e$	eccentricity of connection, in.
	· /	1			
	$l = \frac{l}{2}$	$\frac{l_2}{2}$, where l_1 and l_2 shall	not be less than 4 time	es the weld size.	
90					
90 91					
91 92	D5.	PIN-CONNECTI	Th MEMDEDS		
92 93	D3.	FIN-COMMECTI	AD MEMBERS		
	1	Tonsilo Strongth			
94 95	1.	Tensile Strength			~L)
		The design to 1	atronath AD 1	the allowed la territe at	where $D/O_{-2}f$
96 07		rine design tensile	surgingin, $\psi_t P_n$, and	the allowable tensile stre	$r_n/\Sigma_t, 01$
97				ower value determined a	
98		limit states of tens	ile rupture, shear rup	oture, bearing and yieldin	ıg.
99					
100		(a) For tensile rupt	ure	$\mathbf{N} \mathbf{O}$	
101					$(\mathbf{D}5,1)$
102			$P_n = F_u(2tb_e)$		(D5-1)
103					
104		$\mathbf{\Phi}_t =$	= 0.75 (LRFD)	$\Omega_t = 2.00 \text{ (ASD)}$	
105			C > X		
106		(b) For shear ruptu	ire		
107					
108			$P_n = 0.60$	$C_r F_u A_{sf}$	(D5-2)
109					
110		$\phi_{cf} =$	0.75 (LRFD)	$\Omega_{sf} = 2.00 \text{ (ASD)}$	
111					
112		where			
113		$A_{sf} = 2t \left(a + d \right) / 2$	2)		
			,	$in^{2}(mm^{2})$	
114			e shear failure path,		mhora
115				re on pin-connected mer	noers
116			$d_h - d \le 1/32$ in. (1 m	$(100) / 16 \text{ in.} (1 \text{ mm} < d_h - d \le d_h)$	2 mm)
117					
118				the pin hole to the edge	
119			1	ion of the force, in. (mm	/
120				out not more than the actu	
121 122				ge of the part measured	in the unection
			the applied force, in	. (11111)	
123		d = diameter d			
124			of hole, in. (mm)		
125		t = thickness	of plate, in. (mm)		
126		(-) E - 1 '	41		
127				f the pin, use Section J7.	
128		(a) For yielding or	the gross section, u	se Section D2(a).	

129		
130	2.	Dimensional Requirements
131		
132		Pin-connected members shall meet the following requirements:
133		(a) The sin hale shall be leasted midway between the edges of the member in
134 135		(a) The pin hole shall be located midway between the edges of the member in
135		the direction normal to the applied force.
130		(b)When the pin is expected to provide for relative movement between con- nected parts while under full load, the diameter of the pin hole shall not be
137		
138		more than 1/32 in. (1 mm) greater than the diameter of the pin for pins less than 3 in. in diameter and not more than 1/16 in. (2 mm) greater than the
139		diameter of the pin for pins of 3 in. (75 mm) in diameter or greater.
140		(c)The width of the plate at the pin hole shall not be less than $2b_e + d$ and the
142		(c) The which of the plate at the plat hole shall hole be less than $2b_e^{-1}$ a and the minimum extension, <i>a</i> , beyond the bearing end of the pin hole, parallel to
142		the axis of the member, shall not be less than $1.33b_e$.
144		(d)The corners beyond the pin hole are permitted to be cut at 45° to the axis of
145		the member, provided the net area beyond the pin hole, on a plane perpen-
146		dicular to the cut, is not less than that required beyond the pin hole parallel
147		to the axis of the member.
148		
149	D6.	EYEBARS
150		
151	1.	Tensile Strength
152		
153		The available tensile strength of eyebars shall be determined in accordance with
154		Section D2, with A_g taken as the gross area of the eyebar body.
155		
156		For calculation purposes, the width of the body of the eyebars shall not exceed
157		eight times its thickness.
158	2	Dimensional Description of
159 160	2.	Dimensional Requirements
161		Eyebars shall meet the following requirements:
162		Lycoars shan meet the following requirements.
163		(a) Eyebars shall be of uniform thickness, without reinforcement at the pin
164		holes, and have circular heads with the periphery concentric with the pin
165		hole.
166		
167		(b) The radius of transition between the circular head and the eyebar body shall
168		not be less than the head diameter.
169		
170		(c) The pin diameter shall not be less than seven-eighths times the eyebar body
171		width, and the pin-hole diameter shall not be more than 1/32 in. (1 mm)
172		greater than the pin diameter.
173		
174		(d) For steels having F_y greater than 70 ksi (485 MPa), the hole diameter shall
175		not exceed five times the plate thickness, and the width of the eyebar body
176		shall be reduced accordingly.
177 178		(e) A thickness of less than $1/2$ in. (13 mm) is permissible only if external nuts
178		are provided to tighten pin plates and filler plates into snug contact.
180		are provided to ugnicin pin places and micri places into sing contact.
180		(f) The width from the hole edge to the plate edge perpendicular to the direction
182		of applied load shall be greater than two-thirds and, for the purpose of cal-
183		culation, not more than three-fourths times the eyebar body width.
		,

CHAPTER E 1 DESIGN OF MEMBERS FOR COMPRESSION 2 3 4 This chapter addresses members subject to axial compression. 5 The chapter is organized as follows: 6 7 E1. **General Provisions** 8 Effective Length E2. 9 E3. Flexural Buckling of Members without Slender Elements 10 E4. Torsional and Flexural-Torsional Buckling of Single Angles and Members 11 without Slender Elements E5. Single-Angle Compression Members 12 **Built-Up** Members 13 E6. 14 E7. Members with Slender Elements 15 User Note: For cases not included in this chapter, the following sections apply: 16 17 • H1 – H2 Members subject to combined axial compression and flexure 18 • H3 Members subject to axial compression and torsion 19 • I2 Composite axially loaded members 20 • J4.4 Compressive strength of connecting elements 21 22 E1. GENERAL PROVISIONS 23 The design compressive strength, $\phi_c P_n$, and the allowable compressive strength, 24 25 P_n/Ω_c , are determined as follows. The nominal compressive strength, P_n , shall be the lowest value obtained based on 26 27 the applicable limit states of flexural buckling, torsional buckling, and flexural-28 torsional buckling. 29 $\phi_c = 0.90 \, (LRFD) \quad \Omega_c = 1.67 \, (ASD)$ 30 31 32

TABLE USER NOTE E1.1 Selection Table for the Application of **Chapter E Sections** Without Slender With Slender Elements Elements **Cross Section** Sections in Limit Sections in Limit Chapter E States Chapter E States LB E3 FB E7 FB E4 ΤВ ΤВ LB E3 E4 FB E7 FΒ FTB FTB LB E3 FB E7 FB LB E3 FB E7 FB LB E3 FB E7 FB E4 FTB FTB E6 LB FB E6 E3 FB E7 FTB E4 FTB E3 LB FB E5 E4 FΒ FTB E7 E5 N/A E3 FB N/A LB Unsymmetrical shapes other E4 FTB E7 than single angles FTB FB = flexural buckling, TB = torsional buckling, FTB = flexural-torsional buckling, LB = local buckling, N/A = not applicable

34

E2.	EFFECTIVE LENGTH		
	The effective length, L_c , for calculation of member slendern	ess, L_c/r , shall be	
	determined in accordance with Chapter C or Appendix 7,	· · · · ·	
	where		
	$L_c = KL$ = effective length of member, in. (mm)		
	K = effective length factor L = laterally unbraced length of the member, in. (mm)		
	r = radius of gyration, in. (mm)		
	User Note: For members designed on the basis of compression, the effective slenderness ratio, L_c/r , preferably should not exceed 200. Furthermore, the		
	slenderness ratio of the member as fabricated—taken as the fab	-	
	member divided by the least radius of gyration of the section—preferably should not exceed 300.		
	User Note: The effective length, L_c , may be determined using factor, K , or a buckling analysis.	an effective length	
	22	2	
E3.	FLEXURAL BUCKLING OF MEMBERS WITHOUT SLE	NDER	
	ELEMENTS) ·	
	This section applies to nonslender-element compression men	bers, as defined in	
	Section B4.1, for elements in axial compression.		
	Harry Notes. Willow the territorial offertion langth is langer than	41 1 - 4 1	
	User Note: When the torsional effective length is larger than length, Section E4 may control.	the lateral effective	
	longen, socion 2 + may control.		
	The nominal compressive strength, P_n , shall be determined bas	ed on the limit state	
	of flexural buckling:		
	$P_n = F_n A_g$	(E3-1)	
	The nominal stress, F_n , is determined as follows:		
	(a) When $\frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$ (or $\frac{F_y}{F_e} \le 2.25$)		
	$V_{Iy} = I_e$		
	$F_n = \left(0.658^{\frac{F_y}{F_e}}\right)F_y$	(E3-2)	
	(b) When $\frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ (or $\frac{F_y}{F_e} > 2.25$)		
	$F_n = 0.877 F_e$	(E3-3)	
	where $A = \operatorname{gross} \operatorname{gras} \operatorname{of} \operatorname{member} \operatorname{in}^2(\operatorname{mm}^2)$		
	A_g = gross area of member, in. ² (mm ²)		
	E = modulus of elasticity of steel = 29,000 ksi (200 000 M)	Pa)	

 $= \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$

 F_y = specified minimum yield stress of the type of steel being used, ksi (MPa) r = radius of gyration, in. (mm)

analysis, as applicable, ksi (MPa)

 F_e = elastic buckling stress determined according to Equation E3-4; or as

specified in Appendix 7, Section 7.2.3(b); or through an elastic buckling

User Note: The two inequalities for calculating the limits of applicability of Sections E3(a) and E3(b), one based on L_c/r and one based on F_y/F_e , provide the same result for flexural buckling.

E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF SINGLE ANGLES AND MEMBERS WITHOUT SLENDER ELEMENTS

96This section applies to singly symmetric and unsymmetric members, certain doubly97symmetric members, such as cruciform or built-up members, and doubly symmetric98members when the torsional unbraced length exceeds the lateral unbraced length,99all without slender elements. These provisions also apply to single angles with100 $b/t > 0.71\sqrt{E/F_y}$, where b is the width of the longest leg and t is the thickness.

101The nominal compressive strength, P_n , shall be determined based on the limit states102of torsional and flexural-torsional buckling:

$$P_n = F_n A_g \tag{E4-1}$$

The nominal stress, F_n , shall be determined according to Equation E3-2 or E3-3, using the torsional or flexural-torsional elastic buckling stress, F_e , determined as follows:

(a) For doubly symmetric members twisting about the shear center

$$F_e = \left(\frac{\pi^2 E C_w}{L_{cz}^2} + GJ\right) \frac{1}{I_x + I_y}$$
(E4-2)

(b) For singly symmetric members twisting about the shear center where y is the axis of symmetry

$$F_{e} = \left(\frac{F_{ey} + F_{ez}}{2H}\right) \left[1 - \sqrt{1 - \frac{4F_{ey}F_{ez}H}{(F_{ey} + F_{ez})^{2}}}\right]$$
(E4-3)

User Note: For singly symmetric members with the *x*-axis as the axis of symmetry, such as channels, Equation E4-3 is applicable with F_{ey} replaced by F_{ex} .

(c) For unsymmetric members twisting about the shear center, F_e is the lowest root of the cubic equation

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION (E3-4)

125
$$(F_{e} - F_{ex})(F_{e} - F_{ey})(F_{e} - F_{ez}) - F_{e}^{2}(F_{e} - F_{ey})\left(\frac{x_{o}}{\overline{r_{o}}}\right)^{2} - F_{e}^{2}(F_{e} - F_{ex})\left(\frac{y_{o}}{\overline{r_{o}}}\right)^{2} = 0$$
126 (E4-4)
127 where

127

162

128
$$C_w = \text{warping constant, in.}^6 (\text{mm}^6)$$

129 $F_{ex} = \frac{\pi^2 E}{\left(\frac{L_{cx}}{r_x}\right)^2}$ (E4-5)

130
$$F_{ey} = \frac{\pi^2 E}{\left(\frac{L_{cy}}{r_y}\right)^2}$$
(E4-6)

131
$$F_{ez} = \left(\frac{\pi^2 E C_w}{L_{cz}^2} + G J\right) \frac{1}{A_g \overline{r_o}^2}$$
(E4-7)

132
$$G$$
 = shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa)
133 H = flexural constant
 $x^2 + x^2$

 $= 1 - \frac{x_o + y}{\overline{r_o}^2}$ 134 (E4-8)135 I_x, I_y = moment of inertia about the principal axes, in.⁴ (mm^4) 136 J= torsional constant, in.⁴ (mm⁴) 137 K_x = effective length factor for flexural buckling about *x*-axis 138 K_y = effective length factor for flexural buckling about y-axis K_7 = effective length factor for torsional buckling about the 139 longitudinal axis 140 141 $= K_x L_x$ = effective length of member for buckling about *x*-axis, in. L_{cx} 142 (mm) $= K_{y}L_{y}$ = effective length of member for buckling about y-axis, in. 143 L_{cy} 144 (mm)= $K_z L_z$ = effective length of member for buckling about 145 L_{cz} longitudinal axis, in. (mm) 146 L_x, L_y, L_z = laterally unbraced length of the member for each axis, in. (mm) 147 148 \overline{r}_{o} = polar radius of gyration about the shear center, in. (mm) $= x_o^2 + y_o^2 + \frac{I_x + I_y}{A_g}$ \overline{r}_o^2 149 (E4-9) 150 = radius of gyration about x-axis, in. (mm) r_x = radius of gyration about y-axis, in. (mm) 151 r_y 152 = coordinates of the shear center with respect to the centroid, in. x_o, y_o 153 (mm)154 **User Note:** For doubly symmetric I-shaped sections, C_w may be taken as $I_v h_o^2/4$, 155 where h_o is the distance between flange centroids, in lieu of a more precise analysis. 156 For tees and double angles, the term with C_w may be omitted when computing F_{ez} . 157 158 159 (d) For doubly symmetric I-shaped members with minor axis lateral bracing offset 160 from the shear center 161

$$F_{e} = \left[\frac{\pi^{2} E I_{y}}{L_{cz}^{2}} \left(\frac{h_{o}^{2}}{4} + y_{a}^{2}\right) + G J\right] \frac{1}{A_{g} r_{o}^{2}}$$
(E4-10)

163 164 where $r_o^2 = (r_x^2 + r_y^2 + y_a^2 + x_a^2)$ 165 (E4-11) h_o = distance between flange centroids, in. (mm) 166 y_a = bracing offset distance along y-axis, in. (mm) 167 x_a = bracing offset distance along x-axis = 0 168 169 170 (e) For doubly symmetric I-shaped members with major axis lateral bracing offset from the shear center 171 172 $F_e = \left[\frac{\pi^2 E I_y}{L_{cz}^2} \left(\frac{h_o^2}{4} + \frac{I_x}{I_y} x_a^2\right) + G J\right] \frac{1}{A_e r_o^2}$ 173 (E4-12) 174 175 where 176 y_a = bracing offset distance along y-axis = 0 x_a = bracing offset distance along x-axis, in. (mm) 177 178 179 (f) For all other members with lateral bracing offset from the shear center, the elastic 180 buckling stress, F_e , shall be determined by analysis. 181 182 User Note: Bracing offset from the shear center is often referred to as constrained-183 axis torsional buckling and is discussed further in the Commentary. Members that 184 buckle in this mode will exhibit twisting because the braces restrain only lateral 185 movement. 186 **E5. SINGLE-ANGLE COMPRESSION MEMBERS** 187 188 189 The nominal compressive strength, P_n , of single-angle members shall be the lowest 190 value based on the limit states of flexural buckling in accordance with Section E3 or Section E7, as applicable, or flexural-torsional buckling in accordance with 191 Section E4. Flexural-torsional buckling need not be considered when $b/t \le 0.71 \sqrt{E/F_v}$ 192 193 194 The effects of eccentricity on single-angle members are permitted to be neglected 195 and the member evaluated as axially loaded using one of the effective slenderness 196 ratios specified in Section E5(a) or E5(b), provided that the following requirements 197 are met: 198 199 (1) Members are loaded at the ends in compression through the same one leg. 200 (2) Members are attached by welding or by connections with a minimum of two 201 bolts 202 (3) There are no intermediate transverse loads. (4) L_c/r as determined in this section does not exceed 200. 203 204 (5) For unequal leg angles, the ratio of long leg width to short leg width is less than 205 1.7. 206 207 Single-angle members that do not meet these requirements or the requirements 208 described in Section E5(a) or (b) shall be evaluated for combined axial load and 209 flexure using the provisions of Chapter H. 210 (a) For angles that are individual members or are web members of planar trusses 211 with adjacent web members attached to the same side of the gusset plate or 212 chord Specification for Structural Steel Buildings, xx, 2022

Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

(E5-1)

(E5-4)

215 (i) When
$$\frac{L}{r_a} \le 80$$

$$\frac{L_c}{r} = 72 + 0.75 \frac{L}{r_a}$$

217 (ii) When
$$\frac{L}{r_a} > 80$$

$$\frac{L_c}{r} = 32 + 1.25 \frac{L}{r_a}$$
(E5-2)

- 220 (2) For unequal-leg angles connected through the shorter leg, L_c/r from Equations E5-1 and E5-2 shall be increased by adding 4 $(b_l/b_s)^2 - 1$, but 221 L_c/r of the members shall not be taken as less than $0.95L/r_z$. 222
 - (b) For angles that are web members of box or space trusses with adjacent web members attached to the same side of the gusset plate or chord
 - (1) For equal-leg angles or unequal-leg angles connected through the longer leg

(i) When
$$\frac{L}{r_a} \le 75$$

$$\frac{L_c}{r} = 60 + 0.8 \frac{L}{r_a}$$
(E5-3)

$$\frac{L_c}{L_c} = 45 + \frac{L}{L}$$
(E5-4)

(ii) When
$$\frac{L}{r_a}$$
 >

230

231 232

233

234 235

236

216

218

219

223 224

225

226

227

228

229

(2) For unequal-leg angles with leg length ratios less than 1.7 and connected through the shorter leg, L_c/r from Equations E5-3 and E5-4 shall be increased by adding 6 $(b_l/b_s)^2 - 1$, but L_c/r of the member shall not be taken as less than $0.82L/r_z$

where

237 238 L = length of member between work points at truss chord centerlines, in. (mm) 239 L_c = effective length of the member for buckling about the minor axis, in. (mm) 240 b_l = length of longer leg of angle, in. (mm) $b_s =$ length of shorter leg of angle, in. (mm) 241 242 r_a = radius of gyration about the geometric axis parallel to the connected leg, in. 243 (mm) 244 r_z = radius of gyration about the minor principal axis, in. (mm) 245

246 E6. BUILT-UP MEMBERS 247

248 1. **Compressive Strength**

249

This section applies to built-up members composed of two shapes either (a) interconnected by bolts or welds or (b) with at least one open side interconnected by perforated cover plates or lacing with tie plates. The end connection shall be welded or connected by means of pretensioned bolts with Class A or B faying surfaces.

User Note: It is acceptable to design a bolted end connection of a built-up compression member for the full compressive load with bolts in bearing and bolt design based on the shear strength; however, the bolts must be pretensioned. In builtup compression members, such as double-angle struts in trusses, a small relative slip between the elements can significantly reduce the compressive strength of the strut. Therefore, the connection between the elements at the ends of built-up members should be designed to resist slip.

The nominal compressive strength of built-up members composed of two shapes that are interconnected by bolts or welds shall be determined in accordance with Sections E3, E4, or E7, subject to the following modification. In lieu of more accurate analysis, if the buckling mode involves relative deformations that produce shear forces in the connectors between individual shapes, L_c/r is replaced by

267 $(L_c/r)_m$, determined as follows:

261

269

270

271 272

273

274

276

277

268 (a) For intermediate connectors that are bolted snug-tight

 $\left(\frac{L_c}{r}\right)_m = \sqrt{\left(\frac{L_c}{r}\right)_o^2 + \left(\frac{a}{r_i}\right)^2}$ (E6-1)

(b) For intermediate connectors that are welded or are connected by means of pretensioned bolts with Class A or B faying surfaces

 $(1) \text{ When } \frac{a}{r_i} \le 40$

$$\left(\frac{L_c}{r}\right)_m = \left(\frac{L_c}{r}\right)_o$$
(E6-2a)

278 (2) When $\frac{a}{r} >$

279
$$\left(\frac{L_c}{r}\right)_m = \sqrt{\left(\frac{L_c}{r}\right)_o^2 + \left(\frac{K_i a}{r_i}\right)^2}$$
(E6-2b)
280

where 281 = modified slenderness ratio of built-up member 282 $\left(\frac{L_c}{r}\right)_c$ = slenderness ratio of built-up member acting as a unit in the buckling 283 284 direction being addressed 285 L_c = effective length of built-up member, in. (mm) Ki = 0.50 for angles back-to-back 286 Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

	 = 0.75 for channels back-to-back = 0.86 for all other cases a = distance between connectors, in. (mm) r_i = minimum radius of gyration of individual component, in. (mm)
Gen	eral Requirements
Bui	lt-up members shall meet the following requirements:
(a)	Individual components of compression members composed of two or more shapes shall be connected to one another at intervals, a , such that the slenderness ratio, a/r_i , of each of the component shapes between the fasteners
	does not exceed three-fourths times the governing slenderness ratio of the built- up member. The minimum radius of gyration, r_i , shall be used in computing the

slenderness ratio of each component part. (b) At the ends of built-up compression members bearing on base plates or finished

287

288

289

290

291 292

293 294

295

296

297

298

299

300

318 319

320

321

322

323 324

325

326

327

328

329

330

331

2.

- 301 surfaces, all components in contact with one another shall be connected by a 302 303 weld having a length not less than the maximum width of the member or by 304 bolts spaced longitudinally not more than four diameters apart for a distance 305 equal to 1-1/2 times the maximum width of the member.
- 306 Along the length of built-up compression members between the end 307 connections required in the foregoing, longitudinal spacing of intermittent 308 welds or bolts shall be adequate to provide the required strength. For limitations 309 on the longitudinal spacing of fasteners between elements in continuous contact 310 consisting of a plate and a shape, or two plates, see Section J3.5. Where a 311 component of a built-up compression member consists of an outside plate, the maximum spacing shall not exceed the thickness of the thinner outside plate 312 times $0.75\sqrt{E/F_v}$, nor 12 in. (300 mm), when intermittent welds are provided 313 along the edges of the components or when fasteners are provided on all gage 314 315 lines at each section. When fasteners are staggered, the maximum spacing of fasteners on each gage line shall not exceed the thickness of the thinner outside 316 plate times $1.12\sqrt{E/F_y}$ nor 18 in. (460 mm). 317
 - (c) Open sides of compression members built up from plates or shapes shall be provided with continuous cover plates perforated with a succession of access openings. The unsupported width of such plates at access openings, as defined in Section B4.1, is assumed to contribute to the available strength provided the following requirements are met:
 - (1) The width-to-thickness ratio shall conform to the limitations of Section B4.1.

User Note: It is conservative to use the limiting width-to-thickness ratio for Case 7 in Table B4.1a with the width, b, taken as the transverse distance between the nearest lines of fasteners. The net area of the plate is taken at the widest hole. In lieu of this approach, the limiting width-to-thickness ratio may be determined through analysis.

- (2) The ratio of length (in direction of stress) to width of hole shall not exceed 2.
- 332 (3) The clear distance between holes in the direction of stress shall be not less 333 than the transverse distance between nearest lines of connecting fasteners 334 or welds.

- 335 336
- (4) The periphery of the holes at all points shall have a minimum radius of 1-1/2 in. (38 mm).
- 337 (d) As an alternative to perforated cover plates, lacing with the plates is permitted 338 at each end and at intermediate points if the lacing is interrupted. Tie plates shall 339 be as near the ends as practicable. In members providing available strength, the 340 end tie plates shall have a length of not less than the distance between the lines 341 of fasteners or welds connecting them to the components of the member. 342 Intermediate tie plates shall have a length not less than one-half of this distance. 343 The thickness of tie plates shall be not less than one-fiftieth of the distance 344 between lines of welds or fasteners connecting them to the segments of the 345 members. In welded construction, the welding on each line connecting a tie plate shall total not less than one-third the length of the plate. In bolted 346 construction, the spacing in the direction of stress in tie plates shall be not more 347 348 than six diameters and the tie plates shall be connected to each segment by at 349 least three fasteners.
- 350 (e) Lacing, including flat bars, angles, channels or other shapes employed as lacing, shall be so spaced that L/r of the flange element included between their 351 connections shall not exceed three-fourths times the governing slenderness ratio 352 353 for the member as a whole. Lacing shall be proportioned to provide a shearing 354 strength normal to the axis of the member equal to 2% of the available 355 compressive strength of the member. For lacing bars arranged in single systems, 356 L/r shall not exceed 140. For double lacing, this ratio shall not exceed 200. Double lacing bars shall be joined at the intersections. For lacing bars in 357 compression, L is permitted to be taken as the unsupported length of the lacing 358 bar between welds or fasteners connecting it to the components of the built-up 359 member for single lacing, and 70% of that distance for double lacing. 360
- 361User Note: The inclination of lacing bars to the axis of the member shall362preferably be not less than 60° for single lacing and 45° for double lacing. When363the distance between the lines of welds or fasteners in the flanges is more than36415 in. (380 mm), the lacing should preferably be double or made of angles.
- 365 For additional spacing requirements, see Section J3.5.
- 366

368

369 370

371

372 373

374

375 376

367 E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to slender-element compression members, as defined in Section B4.1 for elements in axial compression.

The nominal compressive strength, P_n , shall be the lowest value based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling in interaction with local buckling.

$$P_n = F_n A_e \tag{E7-1}$$

377 where 378 A_e = summation of the effective areas of the cross section based on reduced 379 effective widths, b_e , d_e or h_e , or the area as given by Equations E7-6 or E7-380 7, in.² (mm²) 381 F_n = nominal stress determined in accordance with Section E3 or E4, ksi (MPa). 382 For single angles, determine F_n in accordance with Section E3 only. 383 384 User Note: The effective area, A_e , may be determined by deducting from the gross 385 area, A_s , the reduction in area of each slender element determined as $(b-b_e)t$.

(E7-2)

(E7-6)

386 387

388 389

391

1. Slender Element Members Excluding Round HSS

The effective width, b_e , (for tees, this is d_e ; for webs, this is h_e) for slender elements 390 is determined as follows:

 $b_e = b$

(a) When $\lambda \leq \lambda_r \sqrt{\frac{F_y}{F_r}}$ 392

393 394

(b) When $\lambda > \lambda_r \sqrt{\frac{F_y}{F_r}}$ 395

396

$$b_e = b \left(1 - c_1 \sqrt{\frac{F_{el}}{F_n}} \right) \sqrt{\frac{F_{el}}{F_n}}$$
(E7-3)

398

399 where = width of the element (for tees this is d; for webs this is h), in. (mm) b 400 c_1 = effective width imperfection adjustment factor determined from Table E7.1 401 $c_2 = \frac{1 - \sqrt{1 - 4c_1}}{2c_1}$ 402 (E7-4) λ = width-to-thickness ratio for the element as defined in Section B4.1 403 λ_r = limiting width-to-thickness ratio as defined in Table B4.1a 404 $F_{el} = \left(c_2 \, \frac{\lambda_r}{\lambda}\right)^2 F_y$ 405 (E7-5)

406

407 408 = elastic local buckling stress determined according to Equation E7-5 or an elastic local buckling analysis, ksi (MPa)

Table E7.1Effective Width Imperfection Adjustment Factors, c_1 and c_2				
Case	Slender Element	C 1	C ₂	
(a)	Stiffened elements except walls of square and rectangular HSS	0.18	1.31	
(b)	Walls of square and rectangular HSS	0.20	1.38	
(c)	All other elements	0.22	1.49	

The effective area, A_{e_i} is determined as follows:

409

410 2. **Round HSS**

411

412 413

(a) When $\frac{D}{t} \le 0.11 \frac{E}{F_{y}}$

415

414

416

417 (b) When $0.11 \frac{E}{F_v} < \frac{D}{t} < 0.45 \frac{E}{F_v}$ 418

> Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

 $A_e = A_g$

E-12

(E7-7)

424

420
$$A_{e} = \left[\frac{0.038E}{F_{y}(D/t)} + \frac{2}{3}\right]A_{g}$$

423 D = outside diameter of round HSS, in. (mm)

t =thickness of wall, in. (mm)

PUBLICA. FEB. 24. 2022

CHAPTER F

1 2

3 4

11 12

13

14

15 16

17

18

21 22

23

24 25

26

27

28

29

DESIGN OF MEMBERS FOR FLEXURE

5 This chapter applies to members subject to simple bending about one principal axis. 6 For simple bending, the member is loaded in a plane parallel to a principal axis that 7 passes through the shear center or is restrained against twisting at load points and 8 supports. 9

10 The chapter is organized as follows:

- F1. General Provisions
- F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis
- F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis
- F4. Other I-Shaped Members with Compact or Noncompact Webs Bent about Their Major Axis
- F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis
 - F6. I-Shaped Members and Channels Bent about Their Minor Axis
 - F7. Square and Rectangular HSS and Box Sections
 - F8. Round HSS
 - F9. Tees and Double Angles Loaded in the Plane of Symmetry
 - F10. Single Angles
 - F11. Rectangular Bars and Rounds
 - F12. Unsymmetrical Shapes
 - F13. Proportions of Beams and Girders

30 User Note: For cases not included in this chapter, the following sections apply:

- Chapter G Design provisions for shear
- H1–H3 Members subject to biaxial flexure or to combined flexure and axial force
- H3 Members subject to flexure and torsion
- Appendix 3 Members subject to fatigue

For guidance in determining the appropriate sections of this chapter to apply, TableUser Note F1.1 may be used.

39

40

	Selection Tab	JSER NOTE ble for the A pter F Sect	Application	ı
Section in Chapter F	Cross Section	Flange Slen- derness	Web Slen- derness	Limit States
F2		С	С	Y, LTB
F3		NC, S	С	LTB, FLB
F4		C, NC, S	C, NC	CFY,LTB, FLB, TFY
F5	<u> </u>	C, NC, S	S	CFY,LTB, FLB, TFY
F6		C, NC, S	N/A	Y, FLB
F7		C, NC, S	C, NC, S	Y, FLB, WLB, LTB
F8	\bigcirc	N/A	N/A	Y, LB
F9		C, NC, S	N/A	Y, LTB, FLB, WLB
F10		N/A	N/A	Y, LTB, LLB
F11	•	N/A	N/A	Y, LTB
F12	Unsymmetrical shapes, other than single angles	N/A	N/A	All limit states
flange local b	CFY = compression flar uckling, WLB = web loca LB = local buckling, C =	al buckling, TFY = te	ension flange yieldi	ng, LLB = leg

41

42	F1.	GENERAL PROVISIONS
43 44		The design flexural strength, $\phi_b M_{n_i}$ and the allowable flexural strength, M_n / Ω_b ,
45		shall be determined as follows:
46		(a) For all provisions in this chapter
47		$\phi_b = 0.90 \text{ (LRFD)} \Omega_b = 1.67 \text{ (ASD)}$
48		
49 50		and the nominal flexural strength, M_n , shall be determined according to
50 51		Sections F2 through F13.
52		(b) The provisions in this chapter are based on the assumption that points of
53		support for beams and girders are restrained against rotation about their
54		longitudinal axis.
55		C C C C C C C C C C C C C C C C C C C
56		(c) For singly symmetric members in single curvature and all doubly sym-
57		metric members
58		
59		The lateral-torsional buckling modification factor, C_b , for nonuniform mo-
60		ment diagrams when both ends of the segment are braced is determined as
61 62		follows:
02		12.5M
63		$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C} $ (F1-1)
64		
64 65		where M_{max} = absolute value of maximum moment in the unbraced sement,
66		kip-in. (N-mm)
67		M_A = absolute value of moment at quarter point of the unbraced seg-
68		ment, kip-in. (N-mm)
69		M_B = absolute value of moment at centerline of the unbraced seg-
70		ment, kip-in. (N-mm)
71		M_C = absolute value of moment at three-quarter point of the un-
72		braced segment, kip-in. (N-mm)
73		
74 75		User Note: For doubly symmetric members with no transverse loading be- tween brace points. Equation F1.1 reduces to 1.0 for the area of equal and
75 76		tween brace points, Equation F1-1 reduces to 1.0 for the case of equal end moments of opposite sign (uniform moment), 2.27 for the case of equal end
77		moments of the same sign (reverse curvature bending), and to 1.67 when one
78		end moment equals zero. For singly symmetric members, a more detailed
79		analysis for C_b is presented in the Commentary. The Commentary provides
80		additional equations for C_b that provide improved characterization of the ef-
81		fects of a variety of member boundary conditions.
82		
83		For cantilevers where warping is prevented at the support and where the
84		free end is unbraced, $C_b = 1.0$.
85 86		(d) In singly symmetric members subject to reverse surveture banding the
86 87		(d) In singly symmetric members subject to reverse curvature bending, the lateral-torsional buckling strength shall be checked for both flanges. The
87 88		available flexural strength shall be greater than or equal to the maximum
89		required moment causing compression within the flange under considera-
90		tion.
91		
92	F2.	DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND
93		CHANNELS BENT ABOUT THEIR MAJOR AXIS
94		

96about their major axis, having compact webs and compact flanges as defined97in Section B4.1 for flexure.989999User Note: For $F_y = 50$ ksi (345 MPa), all current ASTM A6 W, S, M, C, and100MC shapes except W21×48, W14×99, W14×90, W12×65, W10×12, W8×31,101W8×10, W6×15, W6×9, W6×8.5, and M4×6 have compact flanges; For $F_y \leq$ 10270 ksi (485 MPa), all current ASTM A6 W, S, M, HP, C, and MC shapes have103compact webs.

104 The nominal flexural strength, M_n , shall be the lower value obtained according 105 to the limit states of yielding (plastic moment) and lateral-torsional buckling.

$$M_n = M_p = F_y Z_x \tag{F2-1}$$

110 where

 F_y = specified minimum yield stress of the type of steel being used, ksi (MPa) Z_x = plastic section modulus about the x-axis, in.³ (mm³)

This section applies to doubly symmetric I-shaped members and channels bent

115 2. Lateral-Torsional Buckling

116

118

120

122

123

124

125

107 108 109

111 112

113 114

95

(a) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply.

117 (b) When
$$L_p < L_b \le L_r$$

where

М

$${}_{n} = C_{b} \left[M_{p} - \left(M_{p} - 0.7F_{y}S_{x} \right) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] \le M_{p}$$
(F2-2)

119 (c) When $L_b > L_r$

$$M_n = F_{cr} S_x \le M_p \tag{F2-3}$$

121

 L_b = length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section, in. (mm)

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$
(F2-4)

	(t_{ts})
126	= critical stress, ksi (MPa)
127	E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
128	$J = \text{torsional constant, in.}^4 (\text{mm}^4)$
129	S_x = elastic section modulus taken about the x-axis, in. ³ (mm ³)
130	h_o = distance between the flange centroids, in. (mm)
131	
132	User Note: The square root term in Equation F2-4 may be conservatively
133	taken equal to 1.0.
134	
-	
135	User Note: Equations F2-3 and F2-4 provide identical solutions to the fol-
136	lowing expression for lateral-torsional buckling of doubly symmetric sec-
137	tions that has been presented in past editions of this Specification:

138
$$M_{cr} = C_b \frac{\pi}{L_b} \sqrt{EI_5 GJ} + \left(\frac{\pi E}{L_b}\right)^2 I_5 C_w$$
139 The advantage of Equations F2-3 and F2-4 is that the form is very similar to the expression for lateral-torsional buckling of singly symmetric sections given in Equations F4-4 and F4-5.
142
143 L_p , the limiting laterally unbraced length for the limit state of yielding, in. (mm), is:
144 $L_p = 1.76r_y \sqrt{\frac{E}{E_y}}$ (F2-5)
146
147 L_p , the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm), is:
148 $L_p = 1.76r_y \sqrt{\frac{E}{E_y}}$ (F2-5)
149
150 $L_r = 1.95r_{tr} \frac{E}{0.7E_y} \sqrt{\frac{Jc}{S_x h_0}} + \sqrt{\left(\frac{Jc}{S_x h_0}\right)^2} + 6.76 \left(\frac{0.7E_y}{E}\right)^2}$ (F2-6)
151 where
152 $r_y = radius of gyration about y-axis, in. (mm)$
153 $r_a^2 = \frac{\sqrt{L_s C_w}}{S_x}$ (F2-7)
154 and the coefficient c is determined as follows:
155 (1) For doubly symmetric I-shapes
160 $c = \frac{h_w}{2} \sqrt{\frac{L_y}{C_w}}$ (F2-8b)
161 where
162 $I_y = \text{moment of inertia about the y-axis, in.^4 (mm^4)$
163
164 User Note:
165 For doubly symmetric I-shapes with rectangular flanges, $C_w = \frac{L_y h_o^2}{4}$, and, thus,
166 Equation F2-7 becomes
167 r_a may be approximated accurately to conservatively as the radius of gyration
169 $r_b = \frac{h_v}{\sqrt{12} \left(1 + \frac{1}{6} \frac{h_w}{L_y}\right)}$

171 172 F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT 173 174 THEIR MAJOR AXIS 175 176 This section applies to doubly symmetric I-shaped members bent about their 177 major axis having compact webs and noncompact or slender flanges as defined 178 in Section B4.1 for flexure. 179 180 User Note: The following shapes have noncompact flanges for $F_v = 50$ ksi (345 MPa): W21×48, W14×99, W14×90, W12×65, W10×12, W8×31, 181 W8×10, W6×15, W6×9, W6×8.5, and M4×6. All other ASTM A6 W, S, and 182 M shapes have compact flanges for $F_v \leq 50$ ksi (345 MPa). 183 184 185 The nominal flexural strength, M_n , shall be the lower value obtained according to the limit states of lateral-torsional buckling and compression flange local 186 187 buckling. 188 189 1. Lateral-Torsional Buckling 190 For lateral-torsional buckling, the provisions of Section F2.2 shall apply. 191 2. **Compression Flange Local Buckling** 192 (a) For sections with noncompact flanges 193 $M_n = M_p - \left(M_p - 0.7F_y S_x\right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pj}}\right)$ 194 (F3-1) 195 196 (b) For sections with slender flanges 197 $M_n = \frac{0.9Ek_c S_x}{\lambda^2}$ 198 (F3-2) 199 where and shall not be taken less than 0.35 nor greater than 0.76 for 200 201 calculation purposes 202 h = distance as defined in Section B4.1b, in. (mm) b_f $2t_f$ $\lambda =$ 203 b_f = width of the flange, in. (mm) 204 205 t_f = thickness of the flange, in. (mm) 206 $\lambda_{pf} = \lambda_p$ is the limiting width-to-thickness ratio for a compact flange as 207 defined in Table B4.1b $\lambda_{rf} = \lambda_r$ is the limiting width-to-thickness ratio for a noncompact flange as 208 defined in Table B4.1b 209 210 F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR 211 212 NONCOMPACT WEBS BENT ABOUT THEIR MAJOR AXIS

213

214 215 216 217 218		This section applies to doubly symmetric I-shaped members bent about their major axis with noncompact webs and singly symmetric I-shaped members with webs attached to the mid-width of the flanges, bent about their major axis, with compact or noncompact webs, as defined in Section B4.1 for flexure.
219 220 221		User Note: I-shaped members for which this section is applicable may be designed conservatively using Section F5.
222 222 223 224 225		The nominal flexural strength, M_n , shall be the lowest value obtained according to the limit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling, and tension flange yielding.
226	1.	Compression Flange Yielding
227 228		$M_n = R_{pc} M_{yc} \tag{F4-1}$
229		where
230 231 232		$M_{yc} = F_y S_{xc}$ = yield moment in the compression flange, kip-in. (N-mm) R_{pc} = web plastification factor, determined in accordance with Section F4.2(c)(6)
233 234		S_{xc} = elastic section modulus referred to compression flange, in. ³ (mm ³)
235	2.	Lateral-Torsional Buckling
236		(a) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply.
237		(b) When $L_p < L_b \le L_r$
238		$M_{n} = C_{b} \left[R_{pc} M_{yc} - \left(R_{pc} M_{yc} - F_{L} S_{xc} \right) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] \le R_{pc} M_{yc} $ (F4-2)
239		(c) When $L_b > L_r$
240		$M_n = F_{cr} S_{xc} \le R_{pc} M_{yc} \tag{F4-3}$
241		where
242		(1) M_{yc} , the yield moment in the compression flange, kip-in. (N-mm), is:
243		$M_{yc} = F_y S_{xc} \tag{F4-4}$
244		
245 246		(2) F_{cr} , the critical stress, ksi (MPa), is:
240		$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_t}\right)^2} \sqrt{1 + 0.078 \frac{J}{S_{xc} h_o} \left(\frac{L_b}{r_t}\right)^2} $ (F4-5)
248		
249		For $\frac{I_{yc}}{I_y} \le 0.23$, J shall be taken as zero,
250		,
251		where
252		I_{yc} = moment of inertia of the compression flange about the y-
253		axis, in. ⁴ (mm ⁴)
254 255		(3) F_L , nominal compression flange stress above which the inelastic buck-
255 256		ling limit states apply, ksi (MPa), is determined as follows:
		Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

257
258 (i) When
$$\frac{S_{xr}}{S_{xr}} \ge 0.7$$

259 $F_L = 0.7F_y$ (F4-6a)
260
261 (ii) When $\frac{S_{xr}}{S_{xr}} < 0.7$
262 $F_L = F_y \frac{S_{xr}}{S_{xr}} \ge 0.5F_y$ (F4-6b)
263 where
264 $S_{xr} = \text{clastic section modulus referred to tension flange, in.3 (nm3)
265 (4) L_p , the limiting laterally unbraced length for the limit state of yield-
267 in, the limiting unbraced length for the limit state of inelastic lateral-
278 transform $F_{xr} = 1.95r_r \frac{E}{F_L} \sqrt{\frac{J}{S_{xr}h_v}} + \sqrt{\left(\frac{J}{S_{xr}h_v}\right)^2 + 6.76\left(\frac{F_L}{E}\right)^2}$ (F4-8)
279 $R_{pc} = \frac{M_p}{M_{yc}}$ (F4-9a)
280 (b) When $\frac{h_v}{h_v} > \lambda_{pw}$
281 $R_{pc} = \left[\frac{M_p}{M_{yc}} - \left(\frac{M_p}{M_{yc}} - 1\right)\left(\frac{\lambda - \lambda_{pw}}{M_{yc}}\right)\right] \le \frac{M_p}{M_{yc}}$ (F4-9b)
282 (ii) When $I_{xr}/I_y \le 0.23$
283 (ii) When $I_{xr}/I_y \le 0.23$
284 $R_{pc} = \left[\frac{M_p}{M_{yc}} - \left(\frac{M_p}{M_{yc}} - 1\right)\left(\frac{\lambda - \lambda_{pw}}{M_{yc}}\right)\right] \le \frac{M_p}{M_{yc}}$ (F4-9b)
283 (ii) When $I_{xr}/I_y \le 0.23$
284 $R_{pc} = \left[\frac{M_p}{M_{yc}} - \left(\frac{M_p}{M_{yc}} - 1\right)\left(\frac{\lambda - \lambda_{pw}}{M_{yc}}\right)\right] \le \frac{M_p}{M_{yc}}$ (F4-9b)
283 (ii) When $I_{xr}/I_y \le 0.23$
284 $R_{pc} = 1.0$ (F4-10)
285 where
287 $M_p = F_yZ \le 1.6F_yS$,
388 $R_{pc} = F_yZ \le 1.6F_yS$,
388 $R_{pc} = 1.0$ (F4-10)
385 where
389 $R_{pc} = \frac{M_p}{M_{yc}} - (\frac{M_p}{M_{yc}} - 1)\left(\frac{\lambda - \lambda_{pw}}{M_{yc}}\right) \le \frac{M_p}{M_{yc}}$ (F4-9b)
280 $R_{pc} = F_{yZ} \le 1.6F_yS$,
380 $R_{pc} = F_{yZ} \le 1.6F_yS$,
381 $R_{pc} = 1.0$ (F4-10)
382 $R_{pc} = 0$ (F4-10)
383 $R_{pc} = 1.0$ (F4-10)
384 $R_{pc} = 0$ (F4-10)
385 $R_{pc} = 1$ where the distance from the centroid to the following: the in-
396 side face of the compression flange or the inside face of the compression
397 $R_{pc} = 0$ (F4-10) $R_{pc} = R_{pc} = 0$ (F4-10)
398 $R_{pc} = 1$ (F4-10) $R_{pc} = 0$ (F4-10)
399 $R_{pc} = 1$ (F4-10) $R_{pc} = 1$ (F4-10)
390 $R_{pc} = 1$ (F4-10) $R_{pc} = 1$ (F4-10)
391 $R_{pc} = 1$ (F4-10) $R_{pc} = 1$ (F4-10)
392 $R_{pc} = 1$ (F4-10)$

293

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

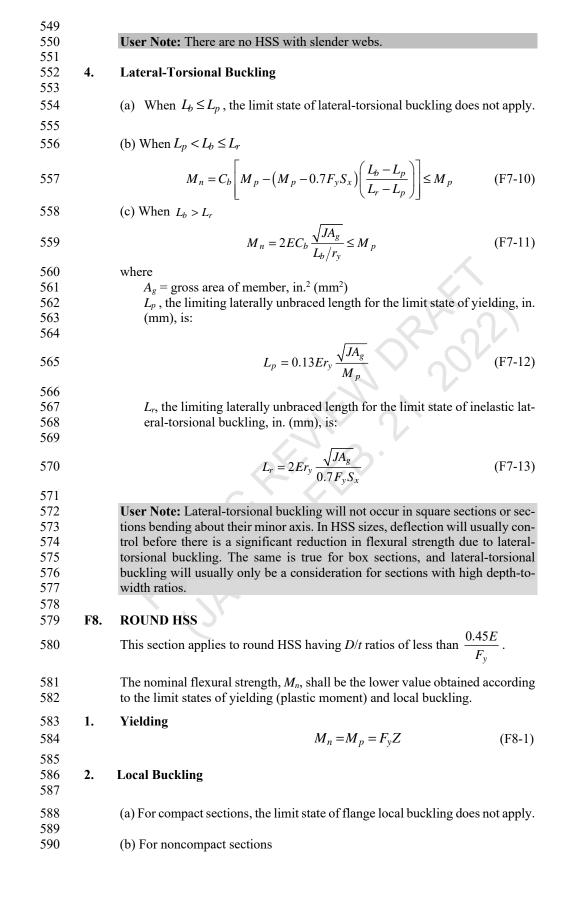
F-8

294	$\lambda_{pw} = \lambda_p$, the limiting width-to-thickness ratio for a compact web as
295	defined in Table B4.1b
296	$\lambda_{rw} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact web
297	as defined in Table B4.1b
298	
299	(7) r_t , the effective radius of gyration for lateral-torsional buckling, in.
300	(mm), is determined as follows:
301	(i) For I-shapes with a rectangular compression flange
302	(1) I of I shapes with a rectangular compression hange
	h c.
303	$r_{t} = \frac{b_{fc}}{\sqrt{12\left(1 + \frac{1}{6}a_{w}\right)}} $ (F4-11)
	$\sqrt{\frac{12}{1+\frac{1}{c}a_w}}$
	$\left(\begin{array}{c} 6 \end{array}\right)$
304	
305	where
306	$a_w = \frac{h_c t_w}{b_{fc} t_{fc}} \tag{F4-12}$
200	$b_{fc}t_{fc}$
307	b_{fc} = width of compression flange, in. (mm)
308	t_{fc} = thickness of compression flange, in. (mm)
309	t_w = thickness of web, in. (mm)
310	
311	(ii) For I-shapes with a channel cap or a cover plate attached to the
312	compression flange
313	
314	r_t = radius of gyration of the flange components in flexural
315	compression plus one-third of the web area in compression
316	due to application of major axis bending moment alone, in.
317	(mm)
	()
318	
318 319	3. Compression Flange Local Buckling
318 319 320	3. Compression Flange Local Buckling
318 319 320 321	3. Compression Flange Local Buckling(a) For sections with compact flanges, the limit state of local buckling does
318 319 320 321 322	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply.
318 319 320 321	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges
318 319 320 321 322 323	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges
318 319 320 321 322	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply.
318 319 320 321 322 323 324	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ- λ_{pf}/λ_{rf} - λ_{pf}) (F4-13)
318 319 320 321 322 323	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges
 318 319 320 321 322 323 324 325 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ- λ_{pf}/λ_{rf} - λ_{pf}) (F4-13) (c) For sections with slender flanges
318 319 320 321 322 323 324	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ- λ_{pf}/λ_{rf} - λ_{pf}) (F4-13) (c) For sections with slender flanges
 318 319 320 321 322 323 324 325 326 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ- λ_{pf}/λ_{rf} - λ_{pf}) (F4-13) (c) For sections with slender flanges M_n = 0.9Ek_cS_{xc}/λ² (F4-14)
 318 319 320 321 322 323 324 325 326 327 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ- λ_{pf}/λ_{rf} - λ_{pf}) (F4-13) (c) For sections with slender flanges M_n = 0.9Ek_cS_{xc}/λ² (F4-14)
 318 319 320 321 322 323 324 325 326 327 328 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \qquad (F4-13)$ (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2} \qquad (F4-14)$ where F_L is defined in Equations F4-6a and F4-6b
 318 319 320 321 322 323 324 325 326 327 328 329 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) (F4-13)$ (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2} (F4-14)$ where <i>F_L</i> is defined in Equations F4-6a and F4-6b <i>R_{pc}</i> is the web plastification factor, determined by Equation F4-9a, F4-
 318 319 320 321 322 323 324 325 326 327 328 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$(F4-13) (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2}$(F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10
 318 319 320 321 322 323 324 325 326 327 328 329 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$(F4-13) (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2}$(F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) \qquad (F4-13)$ (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2} \qquad (F4-14)$ where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = 4/√h/t_w and shall not be taken less than 0.35 nor greater than 0.76
 318 319 320 321 322 323 324 325 326 327 328 329 330 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$(F4-13) (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2}$(F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = ⁴/_{√h/t_w} and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$(F4-13) (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2}$(F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = ⁴/_{√h/t_w} and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) \qquad (F4-13)$ (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2} \qquad (F4-14)$ where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_e = 4/√h/t_w and shall not be taken less than 0.35 nor greater than 0.76
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$(F4-13) (c) For sections with slender flanges $M_n = \frac{0.9Ek_cS_{xc}}{\lambda^2}$(F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = ⁴/_{√h/t_w} and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 	 3. Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges $M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_L S_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) (F4-13)$ (c) For sections with slender flanges $M_n = \frac{0.9Ek_c S_{xc}}{\lambda^2} (F4-14)$ where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = ⁴/_{√h/t_w} and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes $\lambda = \frac{b_{fc}}{2t_{fc}}$
 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 	 Compression Flange Local Buckling (a) For sections with compact flanges, the limit state of local buckling does not apply. (b) For sections with noncompact flanges M_n = R_{pc}M_{yc} - (R_{pc}M_{yc} - F_LS_{xc}) (λ - λ_{pf}/λ_{rf} - λ_{pf}) (F4-13) (c) For sections with slender flanges M_n = 0.9Ek_cS_{xc}/λ² (F4-14) where F_L is defined in Equations F4-6a and F4-6b R_{pc} is the web plastification factor, determined by Equation F4-9a, F4-9b, or F4-10 k_c = 4/(√h/t_w) and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes λ_{pf} = λ_p, the limiting width-to-thickness ratio for a compact flange as de-

336 337		$\lambda_{rf} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact flange as defined in Table B4.1b
338		
339	4.	Tension Flange Yielding
340		
341		(a) When $S_{xt} \ge S_{xc}$, the limit state of tension flange yielding does not apply.
342		
343		(b) When $S_{xt} < S_{xc}$
344		
345		$M_n = R_{pt} M_{yt} \tag{F4-15}$
346		where
347		$M_{yt} = F_y S_{xt}$ = yield moment in the tension flange, kip-in. (N-mm)
348		
349		R_{pl} , the web plastification factor corresponding to the tension flange yield-
350		ing limit state, is determined as follows:
351		
352		(1) When $I_{yc}/I_y > 0.23$
		$\frac{h_c}{h_c} \leq \lambda_{nw}$
353		(i) When $\frac{h_c}{t_w} \le \lambda_{pw}$
254		M_p (TA16)
354		$R_{pt} = \frac{M_p}{M_{vt}} $ (F4-16a)
355		(ii) When $\frac{h_c}{t_{a}} > \lambda_{pw}$
555		(ii) when $\frac{1}{t_w} > \lambda_{pw}$
356		$R_{pt} = \left \frac{M_p}{M_p} - \left(\frac{M_p}{M_p} - 1 \right) \left(\frac{\lambda - \lambda_{pw}}{M_p} \right) \right \le \frac{M_p}{M_p} $ (F4-16b)
550		$R_{pt} = \left[\frac{M_p}{M_{yt}} - \left(\frac{M_p}{M_{yt}} - 1\right)\left(\frac{\lambda - \lambda_{pw}}{\lambda_{rw} - \lambda_{pw}}\right)\right] \le \frac{M_p}{M_{yt}} $ (F4-16b)
357		
358		(2) When $I_{yc}/I_y \le 0.23$
359		$R_{pt} = 1.0$ (F4-17)
360		where
361		$M_{p} = F_{y}Z_{x} \le 1.6F_{y}S_{x}$
		h_c
362		$2 - \overline{t_w}$
363		$\lambda_{pw} = \lambda_p$, the limiting width-to-thickness ratio for a compact web as de-
364		fined in Table B4.1b
365		$\lambda_{rw} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact web as
366		defined in Table B4.1b
367		
368	F5.	DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED
369		MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR MAJOR
370		AXIS
371		
372		This section applies to doubly symmetric and singly symmetric I-shaped mem-
373		bers with slender webs attached to the mid-width of the flanges and bent about
374		their major axis as defined in Section B4.1 for flexure.
375 376		The nominal flexural strength, M_n , shall be the lowest value obtained according
370		to the limit states of compression flange yielding, lateral-torsional buckling,
378		compression flange local buckling, and tension flange yielding.
379		1

380 1. **Compression Flange Yielding** 381 $M_n = R_{pg} F_v S_{xc}$ 382 (F5-1) 383 Lateral-Torsional Buckling 384 2. 385 $M_n = R_{pg} F_{cr} S_{xc}$ (F5-2) 386 (a) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply. 387 388 389 (b) When $L_p < L_b \le L_r$ 390 $F_{cr} = C_b \left[F_y - \left(0.3F_y\right) \left(\frac{L_b - L_p}{L_r - L_p}\right) \right] \le F_y$ 391 (F5-3) 392 (c) When $L_b > L_r$ 393 $F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_t}\right)^2} \le F_y$ 394 (F5-4) 395 396 where 397 L_p is defined by Equation F4-7 398 $\pi r_t \sqrt{\frac{E}{0.7F_v}}$ $L_r =$ 399 (F5-5) r_t = effective radius of gyration for lateral-torsional buckling as defined 400 in Section F4, in. (mm) 401 402 R_{pg} , the bending strength reduction factor, is: 403 $R_{pg} = 1 - \frac{a_w}{1,200 + 300a_w} \left(\frac{h_c}{t_w} - 5.7\sqrt{\frac{E}{F_v}}\right) \le 1.0$ (F5-6) 404 405 406 and 407 a_w is defined by Equation F4-12, but shall not exceed 10 408 409 3. **Compression Flange Local Buckling** $M_n = R_{ng} F_{cr} S_{xc}$ 410 (F5-7) 411 (a) For sections with compact flanges, the limit state of compression flange lo-412 cal buckling does not apply. 413 414 (b) For sections with noncompact flanges $F_{cr} = F_y - \left(0.3F_y\right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{nf}}\right) (F5-8)$ 415 416 (c) For sections with slender flanges 417

F-12


418
$$F_{cr} = \frac{0.9Ek_c}{\left(\frac{b_f}{2t_f}\right)^2}$$
(F5-9)

419		where
420		$k_c = \frac{4}{\sqrt{h/t_w}}$ and shall not be taken less than 0.35 nor greater than
421		0.76 for calculation purposes
422		$\lambda = \frac{b_{fc}}{2t_{fc}}$
423		$\lambda_{pf} = \lambda_p$, the limiting width-to-thickness ratio for a compact flange as de-
424		fined in Table B4.1b
425		$\lambda_{rf} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact flange as
426		defined in Table B4.1b
427		
428	4.	Tension Flange Yielding
429		
430		(a) When $S_{xt} \ge S_{xc}$, the limit state of tension flange yielding does not apply.
431		
432		(b) When $S_{xt} < S_{xc}$
433		
434		$M_n = F_y S_{xt} \tag{F5-10}$
435		(15-10)
436	F6.	I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR
437	10.	MINOR AXIS
438		
439		This section applies to I-shaped members and channels bent about their minor
440		axis.
441		
442		The nominal flexural strength, M_n , shall be the lower value obtained according
443		to the limit states of yielding (plastic moment) and flange local buckling.
444		
445	1.	Yielding
116		$M_n = M_p = F_y Z_y \le 1.6 F_y S_y \tag{F(1)}$
446		(F6-1)
447 448		where $S_{\rm r} = alastic action modulus taken about the varia in 3 (mm3)$
440		S_y = elastic section modulus taken about the y-axis, in. ³ (mm ³) Z_y = plastic section modulus taken about the y-axis, in. ³ (mm ³)
450		Z_y = plastic section modulus taken about the y-axis, in: (initi)
451	2.	Flange Local Buckling
450		
452 453		(a) For sections with compact flanges, the limit state of flange local buck- ling does not apply.
455		ning does not appry.
454		User Note: For $F_v = 50$ ksi (345 MPa), all current ASTM A6 W, S, M,
455		C, and MC shapes except W21x48, W14x99, W14x90, W12x65,
456		W10x12, W8x31, W8x10, W6x15, W6x9, W6x8.5, and M4x6 have com-
457		pact flanges.
450		
458		(b) For sections with noncompact flanges
459		$M_{n} = M_{p} - \left(M_{p} - 0.70F_{y}S_{y}\right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) $ (F6-2)

1	(c) For sections with slender flanges	
	$M_n = F_{cr}S_y$	(F6-3)
	where	
	$F_{cr} = \frac{0.70E}{\left(\frac{b}{t_f}\right)^2}$	(F6-4)
	b = for flanges of I-shaped members, half the full	flange width <i>b</i> .
	for flanges of channels, the full nominal	
	flange, in. (mm)	
	t_f = thickness of the flange, in. (mm)	
	$\lambda = \frac{b}{t_f}$	
	$\lambda_{pf} = \lambda_p$, the limiting width-to-thickness ratio for a d	compact flange as
	$\lambda \rho p = \lambda \rho$, the initial which to the kness function of a constraint of the defined in Table B4.1b	
	$\lambda_{rf} = \lambda_r$, the limiting width-to-thickness ratio for a n	oncompact flange
	as defined in Table B4.1b	
		$\left(\begin{array}{c} 0 \end{array} \right)$
F7.	SQUARE AND RECTANGULAR HSS AND BOX SECT	TIONS
	This section applies to square and rectangular HSS, and I	oox sections bent
	about either axis, having compact, noncompact, or slender w	
	defined in Section B4.1 for flexure.	6,
	The nominal flexural strength, M_n , shall be the lowest value o	btained according
	to the limit states of yielding (plastic moment), flange local be	
	buckling, and lateral-torsional buckling under pure flexure.	dekinig, web local
1.	Yielding	
1.	Ticiumg	
	$M_n = M_p = F_y Z$	(F7 1)
		(F7-1)
	where	
	where $Z =$ plastic section modulus about the axis of bending,	in^{3} (mm ³)
	Σ – plastic section modulus about the axis of bending,	m. (mm [*])
2.	Flange Local Buckling	
	(a) For compact sections, the limit state of flange local buck	kling does not ap-
	ply.	- 1
	(b) For sections with noncompact flanges	
	$M_n = M_p - (M_p - F_y S) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \le M_p$	(F7-2)
	where	
	S = elastic section modulus about the axis of bending, in	$n.^{3} (mm^{3})$
	b = width of compression flange as defined in Section	· · · ·
	t_f = thickness of the flange, in. (mm)	, ()
	$\lambda = \frac{b}{t_f}$	
	5	
	$\lambda_{pf} = \lambda_p$, the limiting width-to-thickness ratio for a c	compact flange as
	defined in Table B4.1b	
	Specification for Structural Steel Buildings, xx, 202	<i>)</i> 7

504	$\lambda_{rf} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact flange
505	as defined in Table B4.1b
506	
507	(c) For sections with slender flanges
508	-
509	$M_n = F_v S_e \tag{F7-3}$
510	$n - y - e \qquad (1 + 3)$
510 511	where
512	S_e = effective section modulus determined with the effective width,
513	b_e , of the compression flange taken as:
514	(1) E \sim 1100
515	(1) For HSS
516	
517	
518	$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left(1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right) \le b \tag{F7-4}$
519	
520	(2) For box sections
521	
522	
523	$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left(1 - \frac{0.34}{b/t_f} \sqrt{\frac{E}{F_y}} \right) \le b \tag{F7-5}$
524	3. Web Local Buckling
525	
526	(a) For compact sections, the limit state of web local buckling does not apply.
527	(b) For sections with noncompact webs
528	
529	
520	$M_{n} = M_{p} - \left(M_{p} - F_{y}S\right) \left(\frac{\lambda - \lambda_{pw}}{\lambda_{rw} - \lambda_{pw}}\right) \le M_{p} $ (F7-6)
530	$M_n = M_p - (M_p - F_y S) \left \frac{N - N_{pw}}{\lambda_{pw} - \lambda_{pw}} \right \le M_p \tag{F7-6}$
501	
531	$()^{\vee} \rightarrow ($
532	where
533	h = depth of web, as defined in Section B4.1b, in. (mm)
534	t_w = thickness of the web, in. (mm)
525	$\lambda = \frac{h}{h}$
535	$\lambda = \frac{n}{t}$
50.6	
536	$\lambda_{pw} = \lambda_p$, the limiting width-to-thickness ratio for a compact web as
537	defined in Table B4.1b
538	$\lambda_{rw} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact web
539	as defined in Table B4.1b
540	
541	(c) For sections with slender webs and compact or noncompact flanges
542	
543	$M_n = R_{pg} F_{\nu} S \tag{F7-7}$
544	where
545	R_{pg} is defined by Equation F5-6 with $a_w = 2ht_w/(bt_f)$
546	, · · ·
547	User Note: Box sections with slender webs and slender flanges are not ad-
548	dressed in this Specification.
210	aroused in and opportroution.

F-15

F-16

(F9-1)

591
$$M_n = \left[\frac{0.021E}{\frac{D}{t}} + F_y\right]S$$
 (F8-2)
592 (c) For sections with slender walls

$$M_n = F_{cr}S \tag{F8-3}$$

where

D = outside diameter of round HSS, in. (mm)

$$F_{cr} = \frac{0.33E}{\left(\frac{D}{t}\right)} \tag{F8-4}$$

t =design wall thickness of HSS member, in. (mm)

F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY

This section applies to tees and double angles loaded in the plane of symmetry.

The nominal flexural strength, M_n , shall be the lowest value obtained accord-ing to the limit states of yielding (plastic moment), lateral-torsional buckling, flange local buckling, and local buckling of tee stems and double angle web legs.

 $M_n = M_p$

Yielding 1.

where

(a) For tee stems and web legs in tension

$$M_p = F_y Z_x \le 1.6M_y \tag{F9-2}$$

where

M_y = yield moment about the axis of bending, kip-in. (N-mm)	
$=F_{y}S_{x}$	(F9-3)

(b) For tee stems in compression

$$M_p = M_y \tag{F9-4}$$

(c) For double angles with web legs in compression

$$M_p = 1.5M_y$$
 (F9-5)

2. Lateral-Torsional Buckling

(a) For stems and web legs in tension (1) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply.

637 (2) When $L_p < L_b \le L_r$

$$M_{n} = M_{p} - (M_{p} - M_{y}) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}}\right)$$
(F9-6)

639 (3) When $L_b > L_r$

where

d

$$M_n = M_{cr} \tag{F9-7}$$

643
$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$$
 (F9-8)

$$L_r = 1.95 \left(\frac{E}{F_y}\right) \frac{\sqrt{I_y J}}{S_x} \sqrt{2.36 \left(\frac{F_y}{E}\right) \frac{dS_x}{J} + 1}$$
(F9-9)

645
$$M_{cr} = \frac{1.95E}{L_b} \sqrt{I_y J} \left(B + \sqrt{1 + B^2} \right)$$
(F9-10)

$$B = 2.3 \left(\frac{d}{L_b}\right) \sqrt{\frac{I_y}{J}}$$
(F9-11)

= depth of tee or width of web leg in tension, in. (mm)

(b) For stems and web legs in compression anywhere along the unbraced length, M_{cr} is given by Equation F9-10 with

$$B = -2.3 \left(\frac{d}{L_b}\right) \sqrt{\frac{I_y}{J}}$$
(F9-12)

where

d = depth of tee or width of web leg in compression, in. (mm)

(1) For tee stems

$$M_n = M_{cr} \le M_y \tag{F9-13}$$

(2) For double-angle web legs, M_n shall be determined using Equations F10-2 and F10-3 with M_{cr} determined using Equation F9-10 and M_y determined using Equation F9-3.

664 3. Flange Local Buckling of Tees and Double-Angle Legs

(a) For tee flanges

(1) For sections with a compact flange in flexural compression, the limit state of flange local buckling does not apply.

(2) For sections with a noncompact flange in flexural compression

$$M_n = \left[M_p - \left(M_p - 0.7 F_y S_{xc} \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \le 1.6 M_y \qquad (F9-14)$$

674 (3) For sections with a slender flange in flexural compression

F-18

676
$$M_n = \frac{0.7ES_{xc}}{\left(\frac{b_f}{2t_f}\right)^2}$$
(F9-15)

677			
678		where	
679		S_{xc} = elastic section modulus referred to the compression flange, in	.3
680		(mm ³)	
681		$\lambda = \frac{b_f}{2t_f}$	
682		$\lambda_{pf} = \lambda_p$, the limiting width-to-thickness ratio for a compact flange a	ıs
683		defined in Table B4.1b	
684		$\lambda_{rf} = \lambda_r$, the limiting width-to-thickness ratio for a noncompact flang	<i>ye</i>
685		as defined in Table B4.1b	,
686			
687		(b) For double-angle flange legs	
688			
689		The nominal flexural strength, M_n , for double angles with the flange leg	ζS
690		in compression shall be determined in accordance with Section F10.3	3,
691		with S_c referred to the compression flange.	
692			
693	4.	Local Buckling of Tee Stems and Double-Angle Web Legs in Flexural	
694		Compression	
695			
696		(a) For tee stems	
697		(a) For tee stems $M_n = F_{cr} S_x$ (F9-16)	5)
698			
699		where	
700		S_x = elastic section modulus taken about the <i>x</i> -axis, in. ³ (mm ³)	
701			
702		F_{cr} , the critical stress, is determined as follows:	
703			
704		(1) When $\frac{d}{t_w} \le 0.84 \sqrt{\frac{E}{F_y}}$	
705			
706		$F_{cr} = F_{y} \tag{F9-17}$!)
707			
708		(2) When $0.84\sqrt{\frac{E}{F_y}} < \frac{d}{t_w} \le 1.52\sqrt{\frac{E}{F_y}}$	
709			
710		$F_{cr} = \left(1.43 - 0.515 \frac{d}{t_w} \sqrt{\frac{F_y}{E}}\right) F_y \tag{F9-18}$	\$)
711			
712		(3) When $\frac{d}{t_w} > 1.52 \sqrt{\frac{E}{F_y}}$	
713			
714		$F_{cr} = \frac{1.52E}{(-2)^2}$ (F9-19)))
		$F_{cr} = \frac{1.52E}{\left(\frac{d}{t_w}\right)^2} \tag{F9-19}$	
715			

716		(b) For double-angle web legs
717 718 719 720 721		The nominal flexural strength, M_n , for double angles with the web legs in compression shall be determined in accordance with Section F10.3, with S_c taken as the elastic section modulus.
722	F10.	SINGLE ANGLES
723 724 725 726		This section applies to single angles with and without continuous lateral re- straint along their length.
726 727 728 729 730 731		Single angles with continuous lateral-torsional restraint along the length are permitted to be designed on the basis of geometric axis (x, y) bending. Single angles without continuous lateral-torsional restraint along the length shall be designed using the provisions for principal axis bending except where the provision for bending about a geometric axis is permitted.
732 733 734 735		If the moment resultant has components about both principal axes, with or without axial load, or the moment is about one principal axis and there is axial load, the combined stress ratio shall be determined using the provisions of Section H2.
736 737 738 739		User Note: For geometric axis design, use section properties computed about the x - and y -axis of the angle, parallel and perpendicular to the legs. For principal axis design, use section properties computed about the major and minor principal axes of the angle.
740 741 742		The nominal flexural strength, M_n , shall be the lowest value obtained according to the limit states of yielding (plastic moment), lateral-torsional buckling, and leg local buckling.
743 744		User Note: For bending about the minor principal axis, only the limit states of yielding and leg local buckling apply.
745	1.	Yielding
746 747 748		$M_n = 1.5M_y \tag{F10-1}$
749	2.	Lateral-Torsional Buckling
750 751		For single angles without continuous lateral-torsional restraint along the
752		length
753		(a) When $\frac{M_y}{M_{cr}} \le 1.0$
754		$M_{n} = \left(1.92 - 1.17 \sqrt{\frac{M_{y}}{M_{cr}}}\right) M_{y} \le 1.5 M_{y} $ (F10-2)
755		(b) When $\frac{M_y}{M_{cr}} > 1.0$
756		$M_{n} = \left(0.92 - \frac{0.17M_{cr}}{M_{y}}\right)M_{cr} $ (F10-3)
757 758		where
758 759		where M_{cr} , the elastic lateral-torsional buckling moment, is determined as fol-
760		lows:

. . . .

762 763

764

765

770

771

772 773

774 775

776

777

778

779 780

781

782 783

784

785 786

787 788

789

790

791

792

793

794

795

796 797

798

799 800

801 802 803

804

805 806 807

761

(1) For bending about the major principal axis of single angles

$$M_{cr} = \frac{9EA_g r_z tC_b}{8L_b} \left[\sqrt{1 + \left(4.4 \frac{\beta_w r_z}{L_b t}\right)^2} + 4.4 \frac{\beta_w r_z}{L_b t} \right]$$
(F10-4)

 766
 where

 767
 C_b is

 768
 A_g =

 769
 C_b is

 C_b is computed using Equation F1-1 with a maximum value of 1.5 A_g = gross area of angle, in.²(mm²)

 L_b = laterally unbraced length of member, in. (mm)

- r_z = radius of gyration about the minor principal axis, in. (mm)
- t =thickness of angle leg, in. (mm)
- β_w = section property for single angles about major principal axis, in. (mm). β_w is positive with short legs in compression and negative with long legs in compression for unequal-leg angles, and zero for equal-leg angles. If the long leg is in compression anywhere along the unbraced length of the member, the negative value of β_w shall be used.

User Note: The equation for β_w and values for common angle sizes are listed in the Commentary.

- (2) For bending about one of the geometric axes of an equal-leg angle with no axial compression
 - (i) With no lateral-torsional restraint:

M

(a) With maximum compression at the toe

$$_{cr} = \frac{0.58Eb^4 tC_b}{L_b^2} \left[\sqrt{1 + 0.88 \left(\frac{L_b t}{b^2}\right)^2} - 1 \right]$$
(F10-5a)

(b) With maximum tension at the toe

$$M_{cr} = \frac{0.58Eb^4 tC_b}{L_b^2} \left[\sqrt{1 + 0.88 \left(\frac{L_b t}{b^2}\right)^2} + 1 \right]$$
(F10-5b)

where

- M_y shall be taken as 0.80 times the yield moment calculated using the geometric section modulus. b = width of leg, in. (mm)
- (ii) With lateral-torsional restraint at the point of maximum moment only:

 M_{cr} shall be taken as 1.25 times M_{cr} computed using Equation F10-5a or F10-5b.

 M_y shall be taken as the yield moment calculated using the geometric section modulus.

User Note:	M_n may be taken as M_y for single angles with their vertical leg toe
in compress	ion, and having a span-to-depth ratio less than or equal to

$$\frac{1.64E}{F_y} \sqrt{\left(\frac{t}{b}\right)^2 - 1.4\frac{F_y}{E}}$$

810 3. Leg Local Buckling

The limit state of leg local buckling applies when the toe of the leg is in compression.

815 (a) For compact sections, the limit state of leg local buckling does not apply.

(b) For sections with noncompact legs

$$M_n = F_y S_c \left[2.43 - 1.72 \left(\frac{b}{t}\right) \sqrt{\frac{F_y}{E}} \right]$$
(F10-6)

(c) For sections with slender legs

$$M_n = F_{cr}S_c \tag{F10-7}$$

821 where

809

811 812

813

814

816

817

818

819 820

822

823

824

825

826 827

828

830 831

832

833

834 835

836

843844845846

 $F_{cr} = \frac{0.71E}{\left(\frac{b}{t}\right)^2}$

 S_c = elastic section modulus to the toe in compression relative to the axis of bending, in.³ (mm³). For bending about one of the geometric axes of an equal-leg angle with no lateral-torsional restraint, S_c shall be 0.80 of the geometric axis section modulus. b = full width of leg in compression, in. (mm)

829 F11. RECTANGULAR BARS AND ROUNDS

This section applies to rectangular bars bent about either geometric axis, and rounds.

The nominal flexural strength, M_n , shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

837 1. Yielding

For rectangular bars

$$M_n = M_p = F_y Z \le 1.5 F_y S_x$$
 (F11-1)

For rounds

$$M_n = M_p = F_y Z \le 1.6 F_y S_x$$
 (F11-2)

850 2. Lateral-Torsional Buckling

851

847

848 849

> Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

(F10-8)

852 (a) For rectangular bars with
$$\frac{L_{sd}}{l^2} \leq \frac{0.08E}{F_y}$$
 bent about their major axis, rec-
853 tangular bars bent about their minor axis, and rounds, the limit state of lat-
854 eral-torsional buckling does not apply.
855 (b) For rectangular bars with $\frac{0.08E}{F_y} < \frac{L_{sd}}{l^2} \leq \frac{1.9E}{F_y}$ bent about their major axis
857 $M_{\mu} = C_{b} \left[1.52 - 0.274 \left(\frac{L_{sd}}{l^2} \right) \frac{F_y}{F_z} \right] M_y \leq M_{\mu}$ (F11-3)
859 where
 $L_{b} = \text{length between points that are either braced against lateral dis-
860 placement of the compression region, or between points braced
861 to prevent twist of the cross section, in. (mm)
862 (c) For rectangular bars with $\frac{L_sd}{l^2} > \frac{1.9E}{F_y}$ bent about their major axis
863 $M_{\mu} = F_{cr}S_x \leq M_{\mu}$ (F11-4)
864 (c) For rectangular bars with $\frac{L_sd}{l^2} > \frac{1.9E}{F_y}$ bent about their major axis
865 $M_{\mu} = F_{cr}S_x \leq M_{\mu}$ (F11-4)
866 where
867 $F_{cr} = \frac{1.9EC_b}{\frac{L_sd}{l^2}}$ (F11-5)
868
869 F12. UNSYMMETRICAL SHAPES
871 This section applies to all unsymmetrical shapes except single angles.
872 The nominal flexural strength, M_{μ} shall be the lowest value obtained according
873 to the limit states of yielding (yield moment), lateral-torsional buckling, and
874 to the limit states of yielding (yield moment), lateral-torsional buckling, and
875 local buckling where
876
877 $M_{\pi} = F_{n}S_{min}$ (F12-1)
878
888 1. Vielding
890 $F_{\mu} = F_{y}$ (F12-2)
891
891 $F_{\mu} = F_{y}$ (F12-2)
892
902 $F_{\mu} = F_{y}$ (F12-2)
893
904 $F_{\mu} = F_{y}$ (F12-2)
993
904 $F_{\mu} = F_{y}$ (F12-3)
905 where
905 $F_{\mu} = lateral-torsional Buckling
906 $F_{\mu} = F_{\mu} =$$$

Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

000		
898 899 900		User Note: In the case of Z-shaped members, it is recommended that F_{cr} be taken as $0.5F_{cr}$ of a channel with the same flange and web properties.
901 902	3.	Local Buckling
903 904		$F_n = F_{cr} \le F_y \tag{F12-4}$
905 906 907		where $F_{cr} = \text{local buckling stress for the section as determined by analysis, ksi}$ (MPa)
908 909 910	F13.	PROPORTIONS OF BEAMS AND GIRDERS
911 912	1.	Strength Reductions for Members with Bolt Holes in the Tension Flange
913 914 915 916		This section applies to rolled or built-up shapes and cover-plated beams with standard and oversize bolt holes or short- and long-slotted bolt holes parallel to the direction of load, proportioned on the basis of flexural strength of the gross section.
917 918 919		In addition to the limit states specified in other sections of this Chapter, the nominal flexural strength, M_n , shall be limited according to the limit state of tensile rupture of the tension flange.
920		(a) When $F_u A_{fn} \ge Y_t F_y A_{fg}$, the limit state of tensile rupture does not apply.
921		
922		(b) When $F_u A_{fn} < Y_t F_y A_{fg}$, the nominal flexural strength, M_n , at the location
923 924		of the holes in the tension flange shall not be taken greater than
924		FAc
925		$M_n = \frac{F_u A_{fn}}{A_{fg}} S_x \tag{F13-1}$
926 027		where
927 928		A_{fg} = gross area of tension flange, calculated in accordance with Section B4.3a, in. ² (mm ²)
928 929		A_{fn} = net area of tension flange, calculated in accordance with Section
930		B4.3b, in.2 (mm2)
931		F_u = specified minimum tensile strength, ksi (MPa)
932		S_x = minimum elastic section modulus taken about the x-axis, in. ³ (mm ³)
933		$Y_t = 1.0 \text{ for } F_y/F_u \le 0.8$ = 1.1 otherwise
934 935		- 1.1 otherwise
936	2.	Proportioning Limits for I-Shaped Members
937		
938		Singly symmetric I-shaped members shall satisfy the following limit:
939		,
940		$0.1 \le \frac{I_{yc}}{I_y} \le 0.9 \tag{F13-2}$
941		
942		Singly and doubly symmetric I-shaped members with slender webs shall sat-
943 944		isfy the following limits:
		a
945		(a) When $\frac{a}{h} \le 1.5$
		Specification for Structural Steel Buildings, xx, 2022

F-24

946
947
$$\left(\frac{h}{t_w}\right)_{max} = 12.0\sqrt{\frac{E}{F_y}}$$
 (F13-3)

(b) When $\frac{a}{h} > 1.5$

$$\left(\frac{h}{t_w}\right)_{max} = \frac{0.40E}{F_y} \tag{F13-4}$$

where

ere a = clear distance between transverse stiffeners, in. (mm)

In unstiffened girders, h/t_w shall not exceed 260. The ratio of 2 times the web area in compression to the compression flange area, a_{w_s} as defined by Equation F4-12, shall not exceed 10.

3. Cover Plates

For members with cover plates, the following provisions apply:

- (a) Flanges of welded beams or girders are permitted to be varied in thickness or width by splicing a series of plates or by the use of cover plates.
- (b) High-strength bolts or welds connecting flange to web, or cover plate to flange, shall be proportioned to resist the total horizontal shear resulting from the bending forces on the girder. The longitudinal distribution of these bolts or intermittent welds shall be in proportion to the intensity of the shear.
- (c) However, the longitudinal spacing shall not exceed the maximum specified for compression or tension members in Sections E6 or D4, respectively. Bolts or welds connecting flange to web shall also be proportioned to transmit to the web any loads applied directly to the flange, unless provision is made to transmit such loads by direct bearing.
- (d) Partial-length cover plates shall be extended beyond the theoretical cutoff point and the extended portion shall be attached to the beam or girder by high-strength bolts in a slip-critical connection or fillet welds. The attachment shall, at the applicable strength given in Sections J2.2, J3.8 or B3.11, develop the cover plate's portion of the flexural strength in the beam or girder at the theoretical cutoff point.
- (e) For welded cover plates, the welds connecting the cover plate termination to the beam or girder shall be continuous welds along both edges of the cover plate in the length a', defined in the following, and shall develop the cover plate's portion of the available strength of the beam or girder at the distance a' from the end of the cover plate.
 - (1) When there is a continuous weld equal to or larger than three-fourths of the plate thickness across the end of the plate

$$a' = w$$
 (F13-5)

997 998 999 1000 1001 1002 1003 1004 1005		 where w = width of cover plate, in. (mm) (2) When there is a continuous weld smaller than three-fourths of the plate thickness across the end of the plate a' = 1.5w (F13-6) (2) When there is no model does not a fithe plate
1006 1007 1008		(3) When there is no weld across the end of the plate $a' = 2w $ (F13-7)
1009 1010 1011 1012 1013 1014 1015 1016 1017	4.	Built-Up Beams Where two or more beams or channels are used side by side to form a flexura member, they shall be connected together in compliance with Section E6.2 When concentrated loads are carried from one beam to another or distribute between the beams, diaphragms having sufficient stiffness to distribute the load shall be welded or bolted between the beams.

CHAPTER G

1

DESIGN OF MEMBERS FOR SHEAR

3 4

5

9

10

11

15 16

17

18

20

21

22

23 24

25 26

27

28 29

30 31

32 33

34

35

38

39

40

41

42

44 45

2

This chapter addresses webs of singly or doubly symmetric members subject to shear 6 in the plane of the web, single angles and HSS subject to shear, and shear in the weak

7 direction of singly or doubly symmetric shapes.

8 The chapter is organized as follows:

- G1. General Provisions
 - G2. I-Shaped Members and Channels
- G3. Single Angles and Tees
- G4. Rectangular HSS, Box Sections, and other Singly and Doubly Symmetric 12 13 Members 14
 - G5. Round HSS
 - G6. Doubly Symmetric and Singly Symmetric Members Subject to Minor-Axis Shear
 - G7. Beams and Girders with Web Openings

19 User Note: For cases not included in this chapter, the following sections apply:

- Unsymmetric sections • H3.3
 - J4.2 Shear strength of connecting elements
- J10.6 Web panel zone shear

G1. GENERAL PROVISIONS

The design shear strength, $\phi_v V_n$, and the allowable shear strength, V_n/Ω_v , shall be determined as follows:

(a) For all provisions in this chapter except Section G2.1(a)

$$\phi_{\nu} = 0.90 (LRFD)$$
 $\Omega_{\nu} = 1.67 (ASD)$

(b) The nominal shear strength, V_n , shall be determined according to Sections G2 through G7.

36 **G2. I-SHAPED MEMBERS AND CHANNELS** 37

This section addresses the determination of shear strength for I-shaped members and channels. Section G2.1 is applicable for webs with and without transverse stiffeners. Alternatively, Sections G2.2 and G2.3 are permitted to be used for webs with transverse stiffeners.

43 1. Shear Strength of Webs

The nominal shear strength, V_n , is:

$$V_n = 0.6F_y A_w C_{v1}$$
 (G2-1)

where

50 F_y = specified minimum yield stress of the type of steel being used, ksi 51 (MPa) 52 A_w = area of web, the overall depth times the web thickness, dt_w , in.² (mm²) 53 54 (a) For webs of rolled I-shaped members with $h/t_w \le 2.24 \sqrt{E/F_y}$ 55 $\phi_{\nu} = 1.00 (LRFD)$ $\Omega_{\nu} = 1.50 (ASD)$ 56 57 and 58 $C_{v1} = 1.0$ 59 (G2-2)60 61 where 62 Ε = modulus of elasticity of steel = 29,000 ksi (200 000 MPa) 63 h = clear distance between flanges less the fillet at each flange, in. 64 (mm)65 t_w = thickness of web, in. (mm) 66 User Note: All current ASTM A6 W, S, and HP shapes except W44x230, 67 68 W40x149, W36x135, W33x118, W30x90, W24x55, W16x26, and 69 W12x14 meet the criteria stated in Section G2.1(a) for $F_v = 50$ ksi (345 70 MPa). 71 72 (b) For all other I-shaped members and channels 73 74 (1) The web shear strength coefficient, C_{v1} , is determined as follows: 75 (i) When $h/t_w \leq 1.10\sqrt{k_v E/F_y}$ 76 77 $C_{v1} = 1.0$ 78 (G2-3)79 80 where 81 h = for built-up welded sections, the clear distance between 82 flanges, in. (mm) = for built-up bolted sections, the distance between fas-83 84 tener lines, in. (mm) 85 (ii) When $h/t_w > 1.10\sqrt{k_v E / F_y}$ 86 87 $C_{v1} = \frac{1.10\sqrt{k_v E / F_y}}{h / t_w}$ 88 (G2-4)89 90 (2) The web plate shear buckling coefficient, k_{ν} , is determined as follows: 91 (i) For webs without transverse stiffeners 92 93 $k_v = 5.34$ 94 95 (ii) For webs with transverse stiffeners $k_{v} = 5 + \frac{5}{\left(a / h\right)^{2}}$ 96 (G2-5) = 5.34 when a / h > 3.097 98 where 99 a = clear distance between transverse stiffeners, in. (mm)

100
 User Note:
$$C_{1i} = 1.0$$
 for all ASTM A6 W, S, M, and HP shapes except

 101
 M12.5x12.4, M12.5x11.6, M12x11.8, M12x10.8, M12x10, M10x8, and

 103
 M10x7.5, when $F_y = 50$ ksi (345 MPa).

 104
 2.
 Shear Strength of Interior Web Panels with $a/h \le 3$ Considering Tension

 105
 Field Action

 106
 Field Action

 107
 The nominal shear strength, V_n , is determined as follows:

 108
 (a) When $h/t_w \le 1.10\sqrt{k_v E/F_y}$

 110
 (a) When $h/t_w > 1.10\sqrt{k_v E/F_y}$

 111
 $V_n = 0.6F_y A_w$

 112
 $V_n = 0.6F_y A_w$

 113
 (b) When $h/t_w > 1.10\sqrt{k_v E/F_y}$

 114
 (1) When $2A_w/(A_{fc} + A_{fc}) \le 2.5$, $h/b_{fc} \le 6.0$ and $h/b_{fc} \le 6.0$

 115
 $V_n = 0.6F_y A_w \left[C_{v2} + \frac{1 - C_{v2}}{1.15\sqrt{1 + (a/h)^2}} \right]$

 116
 $V_n = 0.6F_y A_w \left[C_{v2} + \frac{1 - C_{v2}}{1.15\sqrt{1 + (a/h)^2}} \right]$

 117
 (2) Otherwise

 118
 V_n = 0.6F_y A_w \left[C_{v2} + \frac{1 - C_{v2}}{1.15\sqrt{1 + (a/h)^2}} \right]

 120
 where

 121
 where

 122
 the web shear buckling coefficient, C_{v2} , is determined as follows:

 123
 (i) When $h/t_w \le 1.10\sqrt{k_v E/F_y}$

 <

$$C_{v2} = \frac{1.51k_{v}E}{\left(h/t_{w}\right)^{2}F_{y}}$$
(G2-11)

135136 A_{fc} = area of compression flange, in.² (mm²)137 A_{ft} = area of tension flange, in.² (mm²)138 b_{fc} = width of compression flange, in. (mm)139 b_{ft} = width of tension flange, in. (mm)140 k_v is as defined in Section G2.1(b)(2)

133 134

141	
142	The nominal shear strength is permitted to be taken as the larger of the values
143	from Sections G2.1 and G2.2.
144	
145	User Note: Section G2.1 may predict a higher strength for members that do not
146	meet the requirements of Section G2.2(b)(1).
147	
148	3. Shear Strength of End Web Panels with $a/h \leq 3$ Considering Tension
149	Field Action
150	
150	(a) The nominal shear strength for I-shaped members with equal flange areas
151	(a) The nominal shear strength for 1-shaped memoers with equal hange areas in the end panel, V_n , is
152	In the end panel, v_n , is
155	
154	$V_{n} = 0.6F_{yw}A_{w}\left[C_{v2} + \beta_{v}\left(\frac{1 - C_{v2}}{1.15\sqrt{1 + (a/h)^{2}}}\right)\right] $ (G2-12)
155	
156	where
	$28\left(\frac{M}{M} + M\right) + \frac{M}{M} + M$
157	$\beta_{v} = \frac{2.8 \left(\sqrt{M_{pf} + M_{pm}} + \sqrt{M_{pst} + M_{pm}} \right)}{h \sqrt{F_{yw} t_{w} \left(1 - C_{v2} \right)}} \le 1.0 $ (G2-13)
158	
159	and
160	F_{yw} = specified minimum yield stress of the web material, ksi (MPa)
161	M_{pf} = plastic moment of a section composed of the flange and a seg-
162	ment of the web with the depth, d_e , kip-in. (N-mm)
163	M_{pm} = smaller of M_{pf} and M_{pst} , kip-in. (N-mm)
164	M_{pst} = plastic moment of a section composed of the end stiffener plus
165	a length of web equal to d_e plus the distance from the inside
166	face of the stiffener to the end of the beam, except that the dis-
167	tance from the inside face of the stiffener to the end of the beam
168	shall not exceed $0.84t_w\sqrt{E/F_y}$ for calculation purposes, kip-
169	in. (N-mm)
170	
171	(i) when $C_{\nu 2} \leq 0.8$
172	$d_e = 35t_w \left(0.8 - C_{v2}\right)^2 \tag{G2-14}$
173	
174	(ii) when $C_{\nu 2} > 0.8$
175	$d_e = 0 (G2-15)$
176	The flexural stress in the tension flange, $\alpha M_r/S_{xt}$, in the end panel shall not be larger
177	than $0.35F_y$.
178	
179	where
180	
181	$\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$
182	
183	(b) The nominal shear strength for I-shaped members with unequal flange ar-
184	eas shall be determined by analysis.
185	-

185
186
187 User Note: An approach for I-shaped members with unequal flange areas is discussed in the commentary.

188 189	4.	Transverse Stiffeners						
189	4.	Transverse Stiffeners						
191		For transverse stiffeners, the following shall apply.						
192		For mansverse surfeners, the following shall apply.						
192		(a) Transverse stiffeners are not required where $h/t_w \le 2.54\sqrt{E/F_y}$, or where						
194 195		the available shear strength provided in accordance with Section G2.1 for $k_y = 5.34$ is greater than the required shear strength.						
195		(b) Transverse stiffeners are permitted to be stopped short of the tension						
197		flange, provided bearing is not needed to transmit a concentrated load or						
198		reaction. The weld by which transverse stiffeners are attached to the web						
199		shall be terminated not less than four times nor more than six times the						
200		web thickness from the near toe of the web-to-flange weld or web-to-						
201		flange fillet. When stiffeners are used, they shall be detailed to resist twist						
202		of the compression flange.						
203		(c) Bolts connecting stiffeners to the girder web shall be spaced not more than						
204		12 in. (300 mm) on center. If intermittent fillet welds are used, the clear distance between welds shall not be more than 16 times the web thickness						
205 206		distance between welds shall not be more than 16 times the web thickness nor more than 10 in. (250 mm).						
200								
208		(d) $(b/t)_{st} \le 0.56 \sqrt{\frac{E}{F_{yst}}}$ (G2-16)						
209		(e) $I_{st} \ge I_{st2} + (I_{st1} - I_{st2})\rho_w$ (G2-17)						
210								
211		where						
212								
213 214		F_{yst} = specified minimum yield stress of the stiffener material, ksi (MPa)						
214		I_{st} = moment of inertia of the transverse stiffeners about an axis in						
215		the web center for stiffener pairs, or about the face in contact						
217		with the web plate for single stiffeners, in. ⁴ (mm ⁴)						
218		I_{st1} = minimum moment of inertia of the transverse stiffeners re-						
219		quired for development of the full shear post-buckling re-						
220		sistance of the stiffened web panels, $V_r = V_{c1}$, in. ⁴ (mm ⁴)						
221		$= \frac{h^4 \rho_{st}^{1.3}}{40} \left(\frac{F_{yw}}{E}\right)^{1.5} $ (G2-18)						
222								
223		I_{st2} = minimum moment of inertia of the transverse stiffeners required						
224		for development of the web shear buckling resistance, $V_r = V_{c2}$,						
225		$\operatorname{in.}^4(\mathrm{mm}^4)$						
226		$= \left\lfloor \frac{2.5}{(a/h)^2} - 2 \right\rfloor b_p t_w^3 \ge 0.5 b_p t_w^3 \tag{G2-19}$						
227								
228		V_{c1} = available shear strength calculated with V_n as defined in Sec-						
229		tion G2.1 or G2.2, as applicable, kips (N)						
230		V_{c2} = available shear strength, kips (N), calculated with						
231		$V_n = 0.6F_y A_w C_{v2}$						
232		V_r = required shear strength in the panel being considered, kips (N)						
233		b_p = smaller of the dimension <i>a</i> and <i>h</i> , in. (mm)						

234		$(b/t)_{st}$ = width-to-thickness ratio of the stiffener
235		ρ_{st} = larger of F_{yw}/F_{yst} and 1.0
236		ρ_w = maximum shear ratio, $\left(\frac{V_r - V_{c2}}{V_{c1} - V_{c2}}\right) \ge 0$, within the web panels
237		on each side of the transverse stiffener
238		on each side of the transverse stiffener
239		User Note: I_{st} may conservatively be taken as I_{st1} . Equation G2-18 provides
240		the minimum stiffener moment of inertia required to attain the web shear
240		post-buckling resistance according to Sections G2.1 and G2.2, as applicable.
241		
242		If less post-buckling shear strength is required, Equation G2-17 provides a
243 244		linear interpolation between the minimum moment of inertia required to de-
244		velop web shear buckling and that required to develop the web shear post-
243 246		buckling strength.
240 247	G3.	SINGLE ANGLES AND TEES
247	G 3.	SINGLE ANGLES AND TEES
		The nominal shape strength IV of a single angle loss on a tag starn is
249		The nominal shear strength, V_n , of a single-angle leg or a tee stem is:
250 251		$V_n = 0.6F_y bt C_{v2}$ (G3-1)
252		where
253		$C_{\nu 2}$ = web shear buckling strength coefficient, as defined in Section G2.2
254		with $h/t_w = b/t$ and $k_v = 1.2$
255		b = width of the leg resisting the shear force or depth of the tee stem, in.
256		(mm)
257		t = thickness of angle leg or tee stem, in. (mm)
258		
259	G4 .	RECTANGULAR HSS, BOX SECTIONS, AND OTHER SINGLY
260		AND DOUBLY SYMMETRIC MEMBERS
261		
262		The nominal shear strength, V_n , is:
263		
264		$V_n = 0.6F_y A_w C_{v2} $ (G4-1)
265		
266		For rectangular HSS and box sections
267		$A_w = 2ht, \text{ in.}^2 \text{ (mm}^2)$
268		$C_{\nu 2}$ = web shear buckling strength coefficient, as defined in Section G2.2,
269		with $h/t_w = h/t$ and $k_v = 5$
270		h = width resisting the shear force, taken as the clear distance between
271		the flanges less the inside corner radius on each side for HSS or the
272		clear distance between flanges for box sections, in. (mm). If the
273		corner radius is not known, h shall be taken as the corresponding
274		outside dimension minus 3 times the thickness.
275		t = design wall thickness, as defined in Section B4.2, in. (mm)
276		
277		For other singly or doubly symmetric shapes
278		A_w = area of web or webs, taken as the sum of the overall depth times the
279		web thickness, dt_w , in. ² (mm ²)
280		$C_{\nu 2}$ = web shear buckling strength coefficient, as defined in Section G2.2,
281		with $h/t_w = h/t$ and $k_v = 5$
282		h = width resisting the shear force, in. (mm)
283		= for built-up welded sections, the clear distance between flanges, in.
284		(mm)

285		= for built-up bolted sections, the distance between fastener lines, in.							
286		(mm)							
287		t = web thickness, as defined in Section B4.2, in. (mm)							
288									
289	G5.	ROUND HSS							
290									
291		The nominal shear strength, V_n , of round HSS, according to the limit states of							
292		shear yielding and shear buckling, shall be determined as:							
293									
294		$V_n = F_{cr} A_g / 2 \tag{G5-1}$							
295		where							
296		F_{cr} shall be the larger of							
297		$F_{cr} = \frac{1.60E}{\sqrt{\frac{L_{\nu}}{D}} \left(\frac{D}{t}\right)^{\frac{5}{4}}} $ (G5-2a)							
271		$\Gamma_{cr} = \frac{5}{\sqrt{L(D)^4}}$							
		$\sqrt{\frac{L_{\nu}}{D}} \frac{D}{4}$							
200		VD(1)							
298		and the second							
299		and 0.78 <i>E</i>							
300		$F_{cr} = \frac{0.78E}{\left(\frac{D}{t}\right)^{\frac{3}{2}}} $ (G5-2b)							
		$(D)\overline{2}$							
		$\left(\frac{1}{t}\right)$							
301									
302		but shall not exceed $0.6F_y$							
303									
304		D = outside diameter, in. (mm)							
305									
306		t = design wall thickness, in. (mm)							
307		User Note: The cheer hydrling equations Equations C5.2s and C5.2h will							
308 309		User Note: The shear buckling equations, Equations G5-2a and G5-2b, will control for D/t over 100, high-strength steels, and long lengths. For standard							
310		sections, shear yielding will usually control and $F_{cr} = 0.6F_{\gamma}$.							
311		sections, shear yielding will askarry control and the other y.							
312	G6 .	DOUBLY SYMMETRIC AND SINGLY SYMMETRIC MEMBERS							
313		SUBJECT TO MINOR-AXIS SHEAR							
314									
315		For doubly and singly symmetric members loaded in the minor axis without							
316		torsion, the nominal shear strength, V_n , for each shear resisting element is:							
317		$V = 0.6E h + C \qquad (C6.1)$							
318		$V_n = 0.6F_y b_f t_f C_{\nu 2} (G6-1)$							
319									
320 321		where C_{v2} = web shear buckling strength coefficient, as defined in Section G2.2							
321		with $h/t_w = b_f/2t_f$ for I-shaped members and tees, or $h/t_w = b_f/t_f$ for chan-							
323		nels, and $k_v = 1.2$							
324		b_f = width of flange, in. (mm)							
325		t_f = thickness of flange, in. (mm)							
326									
327		User Note: $C_{v2} = 1.0$ for all ASTM A6 W, S, M, and HP shapes, when							
328		$F_y \le 70 \text{ksi} (485 \text{MPa}).$							
329									
330	G7.	BEAMS AND GIRDERS WITH WEB OPENINGS							
331									

332	The effect of all web openings on the shear strength of steel and composite
333	beams shall be determined. Reinforcement shall be provided when the required
224	

334 strength exceeds the available strength of the member at the opening.

335

PUBLICA FERRICA

	CHAPTER H
DI	ESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION
	chapter addresses members subject to axial force and flexure about one or both with or without torsion, and members subject to torsion only.
The	chapter is organized as follows:
	 H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force H2. Unsymmetric and Other Members Subject to Flexure and Axial Force H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear, and/or Axial Force
	H4. Rupture of Flanges with Bolt Holes Subjected to Tension
User	Note: For composite members, see Chapter I.
H1.	DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE
1.	Doubly and Singly Symmetric Members Subject to Flexure and Compression
	The interaction of flexure and compression in doubly symmetric members and singly symmetric members constrained to bend about a geometric axis (x and/or y) shall be limited by Equations H1-1a and H1-1b.
	User Note: Section H2 is permitted to be used in lieu of the provisions of this section.
	(a) When $\frac{P_r}{P_c} \ge 0.2$
	N. 4.
	$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0 $ (H1-1a)
	(b) When $\frac{P_r}{P_c} < 0.2$
	$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0 $ (H1-1b)
	where P_r = required compressive strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N)
	P_c = available compressive strength, ϕP_n or P_n/Ω , determined in
	accordance with Chapter E, kips (N) M_r = required flexural strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N-mm)
	Specification for Structural Steel Buildings, xx, 2022

Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

H-1

42 43 44 45 46 47		 M_c = available flexural strength, φM_n or M_n/Ω, determined in accordance with Chapter F, kip-in. (N-mm) x = subscript relating symbol to major axis bending y = subscript relating symbol to minor axis bending User Note: All terms in Equations H1-1a and H1-1b are to be taken as positive 					
48 49 50	 Doubly and Singly Symmetric Members Subject to Flexure and Te 						
50 51 52 53		The interaction of flexure and tension in doubly symmetric members and singly symmetric members constrained to bend about a geometric axis (x and/or y) shall be limited by Equations H1-1a and H1-1b,					
54 55 56 57 58		where P_r = required tensile strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N) P_c = available tensile strength, ϕP_n or P_n/Ω , determined in accordance with Chapter D, kips (N)					
59 60		For doubly symmetric members, C_b in Chapter F is permitted to be					
61		multiplied by $\sqrt{1 + \frac{\alpha P_r}{P_{ey}}}$ when axial tension acts concurrently with flexure,					
62							
63		where					
64		$P_{ey} = \frac{\pi^2 E I_y}{L_b^2} \tag{H1-2}$					
65		$\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD)					
66							
67		and					
68		E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)					
69		I_y = moment of inertia about the y-axis, in. ⁴ (mm ⁴)					
70		L_b = length between points that are either braced against lateral					
71		displacement of the compression flange or braced against twist of					
72		the cross section, in. ⁴ (mm ⁴)					
73							
74	3.	Doubly Symmetric Rolled Compact Members Subject to Single-Axis					
75 76		Flexure and Compression					
76 77		For doubly symmetric colled commont members, with the effective length for					
$\frac{7}{78}$		For doubly symmetric rolled compact members, with the effective length for torsional buckling less than or equal to the effective length for <i>y</i> -axis flexural					
79		buckling, $L_{cz} \leq L_{cy}$, subjected to flexure and compression with moments					
80 81 82 83 84		primarily about their major axis, it is permissible to address the two independent limit states, in-plane instability and out-of-plane buckling or lateral-torsional buckling, separately in lieu of the combined approach provided in Section H1.1,					
85		where					
86		L_{cy} = effective length for buckling about the y-axis, in. (mm)					
87 88		L_{cz} = effective length for buckling about the longitudinal axis, in. (mm)					

For members with $M_{ry}/M_{cy} \ge 0.05$, the provisions of Section H1.1 shall be 90 followed. 91 (a) For the limit state of in-plane instability, Equations H1-1a and H1-1b shall 92 be used with P_c taken as the available compressive strength in the plane 93 of bending and M_{cx} taken as the available flexural strength based on the 94 limit state of yielding. 95 96 (b) For the limit state of out-of-plane buckling and lateral-torsional buckling $\frac{P_r}{P_{cv}} \left(1.5 - 0.5 \frac{P_r}{P_{cv}} \right) + \left(\frac{M_{rx}}{C_b M_{cv}} \right)^2 \le 1.0$ 97 (H1-3) 98 where 99 P_{cy} = available compressive strength out of the plane of bending, kips 100 (N) 101 C_b = lateral-torsional buckling modification factor determined from 102 Section F1 103 M_{cx} = available lateral-torsional strength for major axis flexure 104 determined in accordance with Chapter F using $C_b = 1.0$, kip-in. 105 (N-mm) 106107 User Note: In Equation H1-3, $C_b M_{cx}$ may be larger than $\phi_b M_{px}$ in LRFD or 108 M_{px}/Ω_b in ASD. All variables in Equation H1-3 are to be taken as positive. 109 The yielding resistance of the beam-column is captured by Equations H1-1a 110 and H1-1b. 111 112 H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE 113 AND AXIAL FORCE 114 115 This section addresses the interaction of flexure and axial stress for shapes not 116 covered in Section H1. It is permitted to use the provisions of this Section for 117 any shape in lieu of the provisions of Section H1. 118 $\left|\frac{f_{ra}}{F_{ca}} + \frac{f_{rbw}}{F_{cbw}} + \frac{f_{rbz}}{F_{cbz}}\right| \le 1.0$ 119 (H2-1) 120 121 where 122 = required axial stress at the point of consideration, determined in fra 123 accordance with Chapter C, using LRFD or ASD load 124 combinations, ksi (MPa) 125 F_{ca} = available axial stress at the point of consideration, determined 126 in accordance with Chapter E for compression or Section D2 for 127 tension, ksi (MPa) 128 = required flexural stress at the point of consideration, determined frbw, frbz 129 in accordance with Chapter C, using LRFD or ASD load 130 combinations, ksi (MPa). F_{cbw} , F_{cbz} = available flexural stress at the point of consideration, 131 132 determined in accordance with Chapter F, ksi (MPa). Use the 133 section modulus, S, for the specific location in the cross section 134 and consider the sign of the stress.

89

135 136		<i>w</i> = subscript relating symbol to major principal axis bending					
130		z = subscript relating symbol to minor principal axis bending					
138		User Note: The subscripts w and z refer to the principal axes of the	ie				
139		unsymmetric cross section. For doubly symmetric cross sections, these can					
140		be replaced by the <i>x</i> and <i>y</i> subscripts.					
141							
142 143		Equation H2-1 shall be evaluated using the principal bending axes b					
143		considering the sense of the flexural stresses at the critical points of the cross section. The flexural terms are either added to or subtracted from the axial					
145		term as applicable. When the axial force is compression, second-order effects					
146		shall be included according to the provisions of Chapter C.					
147							
148		A more detailed analysis of the interaction of flexure and tension is permitte	d				
149		in lieu of Equation H2-1.					
150							
151 152	Н3.	MEMBERS SUBJECT TO TORSION AND COMBINED TORSION, FLEXURE, SHEAR, AND/OR AXIAL FORCE					
153 154	1.	Round and Rectangular HSS Subject to Torsion					
155	1.	Round and Rectangular 1155 Subject to Torsion					
156		The design torsional strength, $\phi_T T_n$, and the allowable torsional strengt	h,				
157		T_n/Ω_T , for round and rectangular HSS according to the limit states of					
158		torsional yielding and torsional buckling shall be determined as follows:					
159		torstonar yretaing and torstonar outerning shart of determined as ronows.					
160		$T_n = F_{cr}C \tag{H3-1}$					
161		$T_n = F_{cr}C \tag{H3-}$.)				
162		$\phi_T = 0.90 \; (LRFD) \Omega_T = 1.67 \; (ASD)$					
163		$\varphi_1 = 0.50 \text{ (DRD)} \Omega_2 T = 1.07 \text{ (RSD)}$					
164		where					
165		$C = \text{HSS torsional constant, in.}^3 \text{ (mm}^3\text{)}$					
166							
167		The critical stress, F_{cr} , shall be determined as follows:					
168							
169 170		(a) For round HSS, F_{cr} shall be the larger of					
170		1.32.5					
171		(1) $\frac{1.23E}{5}$ (H3-2a)	1				
		(1) $\frac{\sqrt{L}}{\sqrt{\frac{L}{D}}\left(\frac{D}{t}\right)^{\frac{5}{4}}}$ (H3-2a)					
		$\sqrt{D}\left(\frac{t}{t}\right)$					
172							
173		and					
174		(12) $E = 0.60E$ (112.21)					
1/4		(2) $F_{cr} = \frac{0.60E}{\left(\frac{D}{t}\right)^{\frac{3}{2}}}$ (H3-2b)	<i>י</i> י				
		$\left(\begin{array}{c} t \end{array} \right)$					
175							
176							
177		but shall not exceed $0.6F_y$,					
178							
179		where					
		Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022					
		AMERICAN INSTITUTE OF STEEL CONSTRUCTION					

180		D = outside diameter, in. (mm)						
181		L = length of member, in. (mm)						
182		t = design wall thickness defined in Section B4.2, in. (mm)						
183								
184		(b) For rectangular HSS						
185								
186		(1) When $h/t \le 2.45 \sqrt{E/F_y}$						
		·						
187		$F_{cr} = 0.6F_{y} \tag{H3-3}$						
188								
189		(2) When $2.45\sqrt{E/F_y} < h/t \le 3.07\sqrt{E/F_y}$						
190		$F_{cr} = \frac{0.6F_y \left(2.45\sqrt{E/F_y}\right)}{\left(\frac{h}{t}\right)} \tag{H3-4}$						
170		$\left(\frac{h}{h}\right)$ (110-1)						
		$\begin{pmatrix} t \end{pmatrix}$						
191								
192		(3) When $3.07\sqrt{E/F_y} < h/t \le 260$						
		0.450-27						
193		$F_{cr} = \frac{0.458\pi^2 E}{\left(\frac{h}{2}\right)^2} \tag{H3-5}$						
		$\left(\frac{h}{2}\right)$						
		$\left(t \right)$						
194								
195		where						
196		h = flat width of longer side, as defined in Section B4.1b(d), in.						
197		(mm)						
198								
199		User Note: The torsional constant, <i>C</i> , may be conservatively taken as:						
200		$\pi = \frac{\pi (D-t)^2 t}{2}$						
200		For round HSS: $C = \frac{\pi (D-t)^2 t}{2}$						
201		For rectangular HSS: $C = 2(B-t)(H-t)t - 4.5(4-\pi)t^3$						
202								
203	2.	HSS Subject to Combined Torsion, Shear, Flexure and Axial Force						
204								
205		When the required torsional strength, T_r , is less than or equal to 20% of the						
206		available torsional strength, T_c , the interaction of torsion, shear, flexure and/or						
207		axial force for HSS may be determined by Section H1 and the torsional effects						
208		may be neglected. When T_r exceeds 20% of T_c , the interaction of torsion,						
209		shear, flexure and/or axial force shall be limited, at the point of consideration,						
210		by						
		$\begin{pmatrix} P & M & M \end{pmatrix} (V T)^2$						
211		$\left(\frac{P_r}{P_c} + \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) + \left(\frac{V_r}{V_c} + \frac{T_r}{T_c}\right)^2 \le 1.0 $ (H3-6)						
		$\begin{pmatrix} P_c & M_{cx} & M_{cy} \end{pmatrix} \begin{pmatrix} V_c & I_c \end{pmatrix}$						
212								
213		where						
214		V_r/V_c shall be taken as the larger value for the x- or y-axis.						
215								
216		and Design of the state of the						
217		P_r = required axial strength, determined in accordance with Chapter						
218		C, using LRFD or ASD load combinations, kips (N)						
219		P_c = available tensile or compressive strength, ϕP_n or P_n/Ω ,						
220		determined in accordance with Chapter D or E, kips (N)						
		Specification for Structural Steel Buildings, xx, 2022						

Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

221 222 223 224 225 226		M_{rx}, M_{ry} = required flexural strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N-mm) M_{cx}, M_{cy} = available flexural strength, ϕM_n or M_n/Ω , determined in accordance with Chapter F, kip-in. (N-mm)
227 228		V_r = required shear strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N) V_c = available shear strength, ϕV_n or V_n/Ω , determined in
229 230 231 232 233		accordance with Chapter G, kips (N) T_r = required torsional strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N- mm) T_r = available torsional strength ϕT_r or T_r/Ω_r determined in
234 235 236 237		T_c = available torsional strength, ϕT_n or T_n/Ω , determined in accordance with Section H3.1, kip-in. (N-mm) x = subscript relating symbol to major axis bending y = subscript relating symbol to minor axis bending
238		User Note: All terms in Equations H3-6 are to be taken as positive.
239		
240	3.	Non-HSS Members Subject to Torsion and Combined Stress
241		
242 243		The available torsional strength for non-HSS members shall be the lowest value obtained according to the limit states of yielding under normal stress,
243		shear yielding under shear stress, or buckling, determined as follows:
245		$\phi_T = 0.90 \text{ (LRFD)} \qquad \Omega_T = 1.67 \text{ (ASD)}$
246 247		(a) For the limit state of yielding under normal stress
248		(a) For the minit state of yielding under normal stress
249		$F_n = F_y \tag{H3-7}$
250		
251		(b) For the limit state of shear yielding under shear stress
252		
253		$F_n = 0.6F_y \tag{H3-8}$
254		N.C.
255		(c) For the limit state of buckling
256 257		$F_n = F_{cr} \tag{H3-9}$
258		$F_n = F_{cr} \tag{H3-9}$
259		where
260		F_{cr} = buckling stress for the section as determined by analysis, ksi
261		(MPa)
262		
263 264	H4.	RUPTURE OF FLANGES WITH BOLT HOLES AND SUBJECTED
265	117.	TO TENSION
266		
267		At locations of bolt holes in flanges subjected to tension under combined axial
268		force and major axis flexure, flange tensile rupture strength shall be limited by
269 270		Equation H4-1. Each flange subjected to tension due to axial force and flexure shall be sheeked separately.
270		shall be checked separately.
<i>-</i> , 1		Specification for Structural Steel Ruildings xx 2022

$$\frac{P_r}{P_c} + \frac{M_{rx}}{M_{cx}} \le 1.0 \tag{H4-1}$$

where

272

273 274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

- P_r = required axial strength of the member at the location of the bolt holes, determined in accordance with Chapter C, using LRFD or ASD load combinations, positive in tension and negative in compression, kips (N)
- P_c = available axial strength for the limit state of tensile rupture of the net section at the location of bolt holes, ϕP_n or P_n/Ω , determined in accordance with Section D2(b), kips (N)
 - M_{rx} = required flexural strength at the location of the bolt holes, determined in accordance with Chapter C, using LRFD or ASD load combinations, positive for tension and negative for compression in the flange under consideration, kip-in. (N-mm)
- M_{cx} = available flexural strength about *x*-axis for the limit state of tensile rupture of the flange, ϕM_n or M_n/Ω , determined according to Section F13.1. When the limit state of tensile rupture in flexure does not apply, use the plastic moment, M_p , determined with bolt holes not taken into consideration, kip-in. (N-mm)

CHAPTER I

1 2

> 3 4

15

16

17

18 19

20 21

22

23

24 25

26 27

28

29

30

32 33

34

35

36

37 38

39

40 41

42

43

44

DESIGN OF COMPOSITE MEMBERS

5 This chapter addresses composite members composed of rolled or built-up structural 6 steel shapes or HSS and structural concrete acting together, and steel beams support-7 ing a reinforced concrete slab so interconnected that the beams and the slab act to-8 gether to resist bending. Simple and continuous composite beams with steel headed 9 stud anchors, and encased and filled beams, constructed with or without temporary 10 shores, are included. This chapter also addresses concrete filled composite plate shear 11 walls composed of structural steel plates, ties, steel anchors, and structural concrete 12 acting together. 13

14 The chapter is organized as follows:

- I1. General Provisions
- I2. Axial Force
- I2. Axial For I3. Flexure
- I3. Flexul I4. Shear
- 14. Snear
- I5. Combined Flexure and Axial Force
- I6. Load Transfer
- I7. Composite Diaphragms and Collector Beams
- I8. Steel Anchors

I1. GENERAL PROVISIONS

In determining load effects in members and connections of a structure that includes composite members, consideration shall be given to the effective cross sections at the time each increment of load is applied.

31 1. Concrete and Steel Reinforcement

The design, detailing and material properties related to the concrete and reinforcing steel portions of composite construction shall comply with the reinforced concrete design specifications stipulated by the applicable building code. Additionally, the provisions in the *Building Code Requirements for Structural Concrete* (ACI 318) and the *Metric Building Code Requirements for Structural Concrete* (ACI 318M), subsequently referred to in Chapter I collectively as ACI 318, shall apply with the following exceptions and limitations:

- (a) Concrete and steel reinforcement material limitations shall be as specified in Section I1.3.
- (b) Longitudinal and transverse reinforcement requirements shall be as specified in Sections I2 and I3 in addition to those specified in ACI 318.

45 Concrete and steel reinforcement components designed in accordance with ACI
46 318 shall be based on a level of loading corresponding to LRFD load combina47 tions.

User Note: It is the intent of this Specification that the concrete and reinforcing
 steel portions of composite concrete members are designed and detailed utiliz ing the provisions of ACI 318 as modified by this Specification. All require ments specific to composite members are covered in this Specification.

25.02

- Note that the design basis for ACI 318 is strength design. Designers using ASD
 for steel must be conscious of the different load factors.
- 54 55

56 57

58

59

60

61 62

63

64 65

66

67

68

69

80

82 83

84

85

86

87 88

89

90

91

92

93

94

96 97

98

99

100

2. Nominal Strength of Composite Sections

The nominal strength of composite sections shall be determined in accordance with either the plastic stress distribution method, the strain compatibility method, the elastic stress distribution method, or the effective stress-strain method, as defined in this section.

The tensile strength of the concrete shall be neglected in the determination of the nominal strength of composite members.

Local buckling effects shall be evaluated for filled composite members, as defined in Section I1.4. Local buckling effects need not be evaluated for encased composite members or composite plate shear walls meeting the requirements of this chapter.

70 2a. Plastic Stress Distribution Method

71 72 For the plastic stress distribution method, the nominal strength shall be com-73 puted assuming that steel components have reached a stress of F_{y} in either ten-74 sion or compression, and concrete components in compression due to axial 75 force and/or flexure have reached a stress of $0.85 f_c'$, where f_c' is the specified compressive strength of concrete, ksi (MPa). For round HSS filled with 76 77 concrete, a stress of $0.95f'_c$ is permitted to be used for concrete components in 78 compression due to axial force and/or flexure to account for the effects of con-79 crete confinement.

81 **2b.** Strain Compatibility Method

For the strain compatibility method, a linear distribution of strains across the section shall be assumed, with the maximum concrete compressive strain equal to 0.003 in./in. (mm/mm). The stress-strain relationships for steel and concrete shall be obtained from tests or from published results.

User Note: The strain compatibility method can be used to determine nominal strength for irregular sections and for cases where the steel does not exhibit elasto-plastic behavior. General guidelines for the strain compatibility method for encased members subjected to axial load, flexure or both are given in AISC Design Guide 6, *Load and Resistance Factor Design of W-Shapes Encased in Concrete.*

95 2c. Elastic Stress Distribution Method

For the elastic stress distribution method, the nominal strength shall be determined from the superposition of elastic stresses for the limit state of yielding or concrete crushing.

1012d.Effective Stress-Strain Method102

103For the effective stress-strain method, the nominal strength shall be computed104assuming strain compatibility, and effective stress-strain relationships for105structural steel, reinforcing steel, and concrete components accounting for the106effects of local buckling, yielding, interaction and concrete confinement.

108 **3.** Material Limitations

107

109

119

120

155

For concrete, structural steel, and reinforcing steel in composite systems, the following limitations shall be met unless the design is based on the requirements of Appendix 2:

- 113(a) For the determination of the available strength, concrete shall have a spec-114ified compressive strength, f'_c , of not less than 3 ksi (21 MPa) nor more115than 10 ksi (69 MPa) for normal weight concrete and not less than 3 ksi116(21 MPa) nor more than 6 ksi (41 MPa) for lightweight concrete.
- (b) The specified minimum yield stress of structural steel used in calculating
 the strength of composite members shall not exceed 75 ksi (525 MPa).
 - (c) The specified minimum yield stress of reinforcing bars used in calculating the strength of composite members shall not exceed 80 ksi (550 MPa).
- 121 The design of filled composite members constructed from materials with 122 strengths above the limits noted in this section shall be in accordance with Ap-123 pendix 2.
- 124User Note: Appendix 2 includes equations for determining the available125strength of rectangular filled composite members with either the specified min-126imum yield stress of structural steel exceeding 75 ksi (525 MPa) but less than127100 ksi (690 MPa) or specified compressive strength, f'_c , exceeding 10 ksi (69128MPa) but less than 15 ksi (100 MPa).
- 129 4. Classification of Filled Composite Sections for Local Buckling130
- 131 For compression, filled composite sections are classified as compact composite, 132 noncompact composite, or slender-element composite sections. For a section to 133 qualify as compact composite, the maximum width-to-thickness ratio, λ , of its 134 compression steel elements shall not exceed the limiting width-to-thickness ra-135 tio, λ_p , from Table II.1a. If the maximum width-to-thickness ratio of one or more steel compression elements exceeds λ_p , but does not exceed λ_r from Table 136 137 I1.1a, the filled composite section is noncompact composite. If the maximum 138 width-to-thickness ratio of any compression steel element exceeds λ_r , the sec-139 tion is slender-element composite. The maximum permitted width-to-thickness 140 ratio shall be as specified in Table I1.1a. 141
- 142 For flexure, filled composite sections are classified as compact composite, 143 noncompact composite, or slender-element composite sections. For a section to 144 qualify as compact composite, the maximum width-to-thickness ratio of its 145 compression steel elements shall not exceed the limiting width-to-thickness ra-146 tio, λ_p , from Table I1.1b. If the maximum width-to-thickness ratio of one or 147 more steel compression elements exceeds λ_p , but does not exceed λ_r from Table 11.1b, the section is noncompact composite. If the width-to-thickness ratio of 148 149 any steel element exceeds λ_r , the section is slender-element composite. The 150 maximum permitted width-to-thickness ratio shall be as specified in Table 151 I1.1b. 152
- Refer to Section B4.1b for definitions of width, *b* and *D*, and thickness, *t*, for rectangular and round HSS sections and box sections of uniform thickness.
- 156User Note: All current ASTM A1085/A1085M and ASTM A500/A500M157Grade C square HSS sections are compact composite according to the limits of158Table I1.1a and Table I1.1b, except HSS7×7×1/8, HSS8×8×1/8,

HSS10x10x3/16 and HSS12×12×3/16, which are noncompact composite for
both axial compression and flexure, and HSS9x9x1/8, which is slender-element
composite for both axial compression and flexure.

163All current ASTM A500/A500M Grade C round HSS sections are compact164composite according to the limits of Table II.1a and Table II.1b for both axial165compression and flexure, with the exception of HSS6.625x0.125,166HSS7.000x0.125, HSS9.625x0.188, HSS10.000x0.188, HSS12.750x0.250,167HSS14.000x0.250, HSS16.000×0.250, HSS16.000x0.312, and168HSS20.000x0.375, which are noncompact composite for flexure.

- 169
- 170

TABLE I1.1a Limiting Width-to-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Axial Compression for Use with Section I2.2

Description of Element	Width-to- Thickness Ratio	λ _ρ Compact Composite/ Noncompact Composite	λr Noncompact Composite/ Slender-Ele- ment Compo- site	Maximum Permitted		
Walls of Rectan- gular HSS and Box Sec- tions of Uniform Thick- ness	b/t	$2.26\sqrt{\frac{E}{F_y}}$	$3.00\sqrt{\frac{E}{F_y}}$	$5.00\sqrt{\frac{E}{F_y}}$		
Round HSS	D/t	$\frac{0.15E}{F_y}$	$\frac{0.19E}{F_{y}}$	$\frac{0.31E}{F_{y}}$		

171

	Ci	X			
TABLE I1.1b Limiting Width-to-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Flexure for Use with Section I3.4					
Description of Element	Width-to- Thickness Ratio	λ _ρ Compact Composite/ Noncompact Composite	λ _r Noncompact Composite/ Slender-Ele- ment Com- posite	Maximum Permitted	
Flanges of Rectan- gular HSS and Box Sec- tions of Uniform Thickness	blt	$2.26\sqrt{\frac{E}{F_y}}$	$3.00\sqrt{\frac{E}{F_y}}$	$5.00\sqrt{\frac{E}{F_y}}$	
Webs of Rectangu- lar HSS and Box Sec- tions of Uniform Thick- ness	h/t	$3.00\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{rac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$	
Round HSS	D/t	$\frac{0.09E}{F_{y}}$	$\frac{0.31E}{F_y}$	$\frac{0.31E}{F_y}$	

172

173 5. Stiffness for Calculation of Required Strengths

For the direct analysis method of design, the required strengths of encased composite members, filled composite members, and composite plate shear walls shall be determined using the provisions of Section C2 and the following requirements:

- (1) The nominal flexural stiffness of encased and filled composite members subject to net compression shall be taken as the effective stiffness of the composite section, EI_{eff} , as defined in Section I2.
- (2) The nominal axial stiffness of encased and filled composite members subject to net compression shall be taken as the summation of the elastic axial stiffnesses of each component.
- (3) The stiffness of encased and filled composite members subject to net tension shall be taken as the stiffness of the bare steel members in accordance with Chapter C.
- (4) The stiffness reduction parameter, τ_b , shall be taken as 0.8 for encased and filled composite members.

User Note: Taken together, the stiffness reduction factors require the use of $0.64EI_{eff}$ for the flexural stiffness and 0.8 times the nominal axial stiffness of encased composite members and filled composite members subject to net compression in the analysis.

Stiffness values appropriate for the calculation of deflections and for use with the effective length method are discussed in the Commentary.

(5) The flexural stiffness, $(EI)_{eff}$, axial stiffness, $(EA)_{eff}$, and shear stiffness, $(GA)_{eff}$, of composite plate shear walls shall account for the extent of concrete cracking under LRFD load combinations or 1.6 times the ASD load combinations. It is permitted to use the following to estimate effective stiffness:

$(EI)_{eff} = E_s I_s + 0.35 E_c I_c \tag{(EI)}$	[<mark>11-1</mark>])
--	-----------------------	---

$$(EA)_{eff} = E_s A_s + 0.45 E_c A_c \tag{I1-2}$$

$$(GA)_{eff} = G_s A_{sw} + G_c A_c \tag{I1-3}$$

where

 A_c = area of concrete, in.² (mm²) A_s = area of steel section, in.² (mm²)

$$A_{sw}$$
 = area of steel plates in the direction of in-plane shear, in.² (mm²)

 E_c^{int} = modulus of elasticity of concrete

 $= w_c^{1.5} \sqrt{f_c'}$, ksi (0.043 $w_c^{1.5} \sqrt{f_c'}$, MPa)

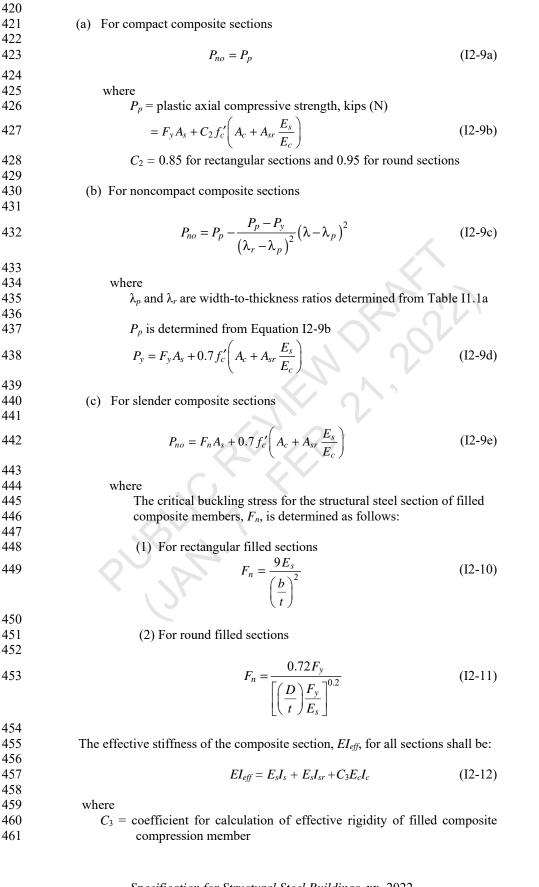
- $E_s =$ modulus of elasticity of steel
 - = 29,000 ksi (200,000 MPa)= shear modulus of steel
- G_s = shear modulus of steel
 - $= 11,200 \text{ ksi} (77\ 200 \text{ MPa})$
- G_c = shear modulus of concrete = 0.4 E_c
- I_c = moment of inertia of the concrete section about the elastic neutral axis of the composite section, in.⁴ (mm⁴)

226 227		
-		I_s = moment of inertia of steel shape about the elastic neutral axis of
		the composite section, in. ⁴ (mm^4)
228		
229		$\leq w_c \leq 2500 \text{ kg/m}^3$
230		
231		(6) The stiffness reduction parameter, τ_b , shall be taken as 1.0 for composite
232		plate shear walls.
233		
234	6.	Requirements for Composite Plate Shear Walls
235		The steel plates shall comprise at least 1% but no more than 10% of the total
235		composite cross-sectional area. The opposing steel plates shall be connected to
237		each other using <i>ties</i> consisting of bars, structural shapes, or built-up members.
238		For filled composite plate shear walls, the steel plates shall be anchored to the
239		concrete using ties or a combination of ties and steel anchors. Walls without
240		flange (closure) plates or boundary elements are not permitted.
241		
242	6a.	Slenderness Requirement
243		The slenderness ratio of the plates, b/t , shall be limited as follows:
244		$\frac{b}{t} \le 1.2 \sqrt{\frac{E}{F_{y}}} \tag{I1-4}$
244		$\frac{-1}{t} \leq 1.2 \sqrt{F_v} \tag{11-4}$
245		where
246		b = largest clear distance between rows of steel anchors or ties, in. (mm)
247		t = plate thickness, in. (mm)
248		
249	6b.	Tie Bar Requirement
250	00.	The Dar Requirement
251		Tie here shall have specing no greater than 1.0 times the well thickness to The
251		Tie bars shall have spacing no greater than 1.0 times the wall thickness, t_{sc} . The tie bar graving to plot thickness ratio s_{sc}/t_{s} shall be limited as follows:
251 252		Tie bars shall have spacing no greater than 1.0 times the wall thickness, t_{sc} . The tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows:
		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows:
		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows:
252		
252		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows:
252		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5)
252		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5)
252 253		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\begin{bmatrix} t_{ar} & & \\ & \\ & \end{bmatrix} \begin{bmatrix} t_{ar} & & \\ & \\ & \end{bmatrix} \begin{bmatrix} t_{ar} & & \\ & \\ & \\ & \end{bmatrix}^4$
252 253		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5)
252 253 254		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6)
252253254255		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where
 252 253 254 255 256 		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$
 252 253 254 255 256 257 		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm)
 252 253 254 255 256 257 258 		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (11-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (11-6) where $s_t =$ largest clear spacing of the ties, in. (mm) t = plate thickness, in. (mm) $t_{sc} =$ thickness of composite plate shear wall, in. (mm)
 252 253 254 255 256 257 258 259 		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm)
252 253 254 255 256 257 258 259 260	12	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$
252 253 254 255 256 257 258 259 260 261	12.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (11-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (11-6) where $s_t =$ largest clear spacing of the ties, in. (mm) t = plate thickness, in. (mm) $t_{sc} =$ thickness of composite plate shear wall, in. (mm)
252 253 254 255 256 257 258 259 260 261 262	Ι2.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE
252 253 254 255 256 257 258 259 260 261 262 263	12.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2\right] \left[\frac{t}{d_{tie}}\right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE This section applies to encased composite members, filled composite members,
252 253 254 255 256 257 258 259 260 261 262 263 264	12.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE
252 253 254 255 256 257 258 259 260 261 262 263 264 265		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} \qquad (I1-5)$ $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4 \qquad (I1-6)$ where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE This section applies to encased composite members, filled composite members, and composite plate shear walls subject to axial force.
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266	12.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} $ (I1-5) $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2\right] \left[\frac{t}{d_{tie}}\right]^4$ (I1-6) where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE This section applies to encased composite members, filled composite members,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267	1.	tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} \qquad (11-5)$ $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4 \qquad (11-6)$ where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE This section applies to encased composite members, filled composite members, and composite plate shear walls subject to axial force. Encased Composite Members
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266		tie bar spacing to plate thickness ratio, s_t / t , shall be limited as follows: $\frac{s_t}{t} \le 1.0 \sqrt{\frac{E_s}{2\alpha + 1}} \qquad (I1-5)$ $\alpha = 1.7 \left[\frac{t_{sc}}{t} - 2 \right] \left[\frac{t}{d_{tie}} \right]^4 \qquad (I1-6)$ where $s_t = \text{largest clear spacing of the ties, in. (mm)}$ t = plate thickness, in. (mm) $t_{sc} = \text{thickness of composite plate shear wall, in. (mm)}$ $d_{tie} = \text{effective diameter of the tie bar, in. (mm)}$ AXIAL FORCE This section applies to encased composite members, filled composite members, and composite plate shear walls subject to axial force.

269

270 For encased composite members, the following limitations shall be met:

271		
272 273		(a) The cross-sectional area of the steel core shall comprise at least 1% of the total composite cross section.
		-
274		(b) Concrete encasement of the steel core shall be reinforced with continu-
275 276		ous longitudinal bars and transverse reinforcement consisting of ties, hoops, and/or spirals.
277		Detailing and placement of longitudinal reinforcement, including bar
278		spacing and concrete cover requirements, shall conform to ACI 318.
279		Transverse reinforcement where specified as ties or hoops shall consist
280 281		of a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in (200 mm) on contart on a No. 4 (12 mm) has an larger spaced at a
281		12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire
283		reinforcement of equivalent area is permitted.
284		
284 285		Maximum spacing of ties or hoops shall not exceed 0.5 times the smaller column dimension.
286 287		(c) The minimum reinforcement ratio for continuous longitudinal rein- forcement, ρ_{sr} , shall be 0.004, where ρ_{sr} is given by:
20/		For content, p_{sr} , shan be 0.004, where p_{sr} is given by:
288		$\rho_{sr} = \frac{A_{sr}}{A_{g}} \tag{I2-1}$
		A_g
289		where
290		A_g = gross area of composite member, in. ² (mm ²)
291 292		A_{sr} = area of continuous longitudinal reinforcing bars, in. ² (mm ²)
292		(d) The maximum reinforcement ratio for continuous longitudinal rein-
294		forcement, ρ_{sr} , shall meet ACI 318 with the gross area of concrete, A_g ,
295		assumed in the calculations.
296		
297 298		User Note: Refer to ACI 318 for additional longitudinal and transverse steel provisions. Refer to Section I4 for shear requirements.
298		provisions. Refer to section 14 for shear requirements.
300	1b.	Compressive Strength
301		
302		The design compressive strength, $\phi_c P_n$, and allowable compressive strength,
303		P_n/Ω_{c_0} of doubly symmetric axially loaded encased composite members shall
304 305		be determined for the limit state of flexural buckling based on member slender-
305 306		ness as follows:
307		$\phi_c = 0.75 \text{ (LRFD)} \qquad \qquad \Omega_c = 2.00 \text{ (ASD)}$
308		$\varphi_{\ell} = 0$
309		(a) When $\frac{P_{no}}{P_{o}} \le 2.25$
310		e
-		$\left(\underbrace{P_{no}}{P_{no}} \right)$
311		$P_n = P_{no} \left(0.658^{\frac{P_{no}}{P_e}} \right) \tag{I2-2}$
312		
313		D
314		(b) When $\frac{P_{no}}{P_{a}} > 2.25$
215		P_e
315		


$$P_n = 0.877 P_e$$
 (I2-3)

316 317 318

318 319		where
320		P_{no} = nominal axial compressive strength without consideration of length
321		effects, kips (N)
322		$=F_{y}A_{s}+F_{ysr}A_{sr}+0.85f_{c}'A_{c}$ (I2-4)
323		P_e = elastic critical buckling load determined in accordance with Chap-
324		ter C or Appendix 7, kips (N)
325		$= \pi^2 (EI_{eff}) / L_c^2 $ (I2-5)
326		A_c = area of concrete, in. ² (mm ²)
327		A_s = cross-sectional area of structural steel section, in. ² (mm ²)
328		E_c = modulus of elasticity of concrete
329		$= w_c^{1.5} \sqrt{f_c'}$, ksi (0.043 $w_c^{1.5} \sqrt{f_c'}$, MPa)
330		EI_{eff} = effective stiffness of composite section, kip-in. ² (N-mm ²)
331		$= E_s I_s + E_s I_{sr} + C_1 E_c I_c \tag{12-6}$
332		C_1 = coefficient for calculation of effective rigidity of an encased com-
333		posite compression member
334		$= 0.25 + 3 \left(\frac{A_s + A_{sr}}{A_g} \right) \le 0.7 $ (I2-7)
335		E_s = modulus of elasticity of steel
336		= 29,000 ksi (200 000 MPa)
337		F_y = specified minimum yield stress of structural steel section, ksi
338		(MPa)
339		F_{ysr} = specified minimum yield stress of reinforcing steel, ksi (MPa)
340		I_c = moment of inertia of the concrete section about the elastic neutral
341		axis of the composite section, in. ⁴ (mm^4)
342 343		I_s = moment of inertia of steel shape about the elastic neutral axis of the composite section, in. ⁴ (mm ⁴)
344		I_{sr} = moment of inertia of reinforcing bars about the elastic neutral axis
345		of the composite section, in. ⁴ (mm^4)
346		K = effective length factor
347		L = laterally unbraced length of the member, in. (mm)
348		$L_c = KL =$ effective length of the member, in. (mm)
349		f_c' = specified compressive strength of concrete, ksi (MPa)
350		w_c = weight of concrete per unit volume (90 $\le w_c \le 155 \text{ lb/ft}^3$ or 1500
351		$\leq w_c \leq 2500 \text{ kg/m}^3$
352		
353		The available compressive strength need not be less than that determined for
354		the bare steel member in accordance with Chapter E.
355	1.	Tonsilo Strongth
356 357	1c.	Tensile Strength
357 358		The available tensile strength of axially loaded encased composite members
358		shall be determined for the limit state of yielding as:
360		shan of determined for the mint state of yreiding as.
361		$P_n = F_v A_s + F_{vsr} A_{sr} \tag{I2-8}$
362		
363		$\phi_t = 0.90 (LRFD)$ $\Omega_t = 1.67 (ASD)$
364		T,, (,,, ()
365	1d.	Load Transfer
366		

367 368		Load transfer requirements for encased composite members shall be deter- mined in accordance with Section I6.
369 370	1e.	Detailing Requirements
371 372 373 374		For encased composite members, the following detailing requirements shall be met:
375 376 377 378		 (a) Clear spacing between the steel core and longitudinal reinforcing bars shall be a minimum of 1.5 longitudinal reinforcing bar diameters, but not less than 1.5 in. (38 mm).
379 380 381 382 383		(b) If the composite cross section is built up from two or more encased steel shapes, the shapes shall be interconnected with lacing, tie plates or comparable components to prevent buckling of individual shapes due to loads applied prior to hardening of the concrete.
384 385 386 387		User Note : Refer to ACI 318 for additional longitudinal and transverse reinforcing steel requirements. Refer to Section I4 for requirements for members subjected to shear. The requirements of Section I2.1.1e are not applicable to composite plate shear walls.
388 389 390	2.	Filled Composite Members
391	2a.	Limitations
392 393		For filled composite members, the following limitations shall be met:
394 395 396		(a) The cross-sectional area of the structural steel section shall comprise at least 1% of the total composite cross section.
397 398		(b) Filled composite members shall be classified for local buckling accord- ing to Section I1.4.
 399 400 401 402 403 404 405 406 407 		(c) Minimum longitudinal reinforcement is not required. If longitudinal re- inforcement is provided, internal transverse reinforcement is not re- quired for strength; however, minimum internal transverse reinforce- ment shall be provided. Transverse reinforcement where specified as ties or hoops shall consist of a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. De- formed wire or welded wire reinforcement of equivalent area is permit- ted.
408 409 410		(d) If longitudinal reinforcing steel is provided for strength, the maximum reinforcement ratio shall be based on ACI 318 requirements for the gross area of concrete.
411 412 413 414		User Note : Refer to ACI 318 for additional longitudinal and transverse steel provisions. Refer to Section I4 and Section I4 Commentary for shear in concrete filled members.
415	2b.	Compressive Strength
416		

417 The available compressive strength of axially loaded doubly symmetric filled
418 composite members shall be determined for the limit state of flexural buckling
419 in accordance with Section I2.1b with the following modifications:

462
$$= 0.45 + 3 \left(\frac{A_{z} + A_{yr}}{A_{x}}\right) \le 0.9$$
 (12-13)
463
464
465 The available compressive strength need not be less than that determined for
467 the bare steel member in accordance with Chapter E.
468
469 The available tensile strength of axially loaded filled composite members
461 shall be determined for the limit state of yielding as:
471
472 $P_{n} = A_{n}F_{y} + A_{yr}F_{yrr}$ (12-14)
473 $\phi_{i} = 0.90 (LRFD)$ $\Omega_{i} = 1.67 (ASD)$
476 2d. Load Transfer
477 Load transfer requirements for filled composite members shall be determined
478 in accordance with Section 16.
489
481 2e. Detailing Requirements
482
483 Clear spacing between the inside of the structural steel section and longitudi-
486 and in reinforcing steel, where provided, shall be a minimum of 1.5 reinforcing
487 bar Composite Plate Shear Walls
488
489 3a. Compressive Strength
490 The available compressive strength of axially loaded composite plate shear
493 wills be determined for the limit state of flexural buckling in accordance
494 wills shall be determined as follows:
495
496 $P_{uv} = F_{y}A_{v} + 0.85 f_{v}A_{v}$ (12-15)
497
498 $\phi_{v} = 0.90 (LRFD)$ $\Omega_{v} = 1.67 (ASD)$
499
500 3b. Tensile Strength
501 The available tensile strength of axially loaded composite plate shear walls
503 $P_{uv} = F_{y}A_{v} + 0.85 f_{v}A_{v}$ (12-15)
504 $P_{uv} = 0.90 (LRFD)$ $\Omega_{v} = 1.67 (ASD)$
505 $P_{v} = 0.90 (LRFD)$ $\Omega_{v} = 1.67 (ASD)$
506 $\phi_{v} = 0.90 (LRFD)$ $\Omega_{v} = 1.67 (ASD)$
507
508 13. FLEXURE
509
509 This section applies to three types of composite members subject to flexure:
509 composite beams with steel anchors consisting of steel headed stud anchors
500 or steel channel anchors, concrete encased members, and concrete filled
501 This section applies to three types of composite members, and concrete filled
502 beams with steel anchors concrete cased members, and concrete filled
503 breaked stud anchors concrete cased members, and concrete filled the structure composite beams with steel ancho

513 514

members.

515 516	1.	General
517 518	1a.	Effective Width
519 520 521		The effective width of the concrete slab shall be the sum of the effective widths for each side of the beam centerline, each of which shall not exceed:
522 523 524		(a) one-eighth of the beam span, center-to-center of supports;(b) one-half the distance to the centerline of the adjacent beam; or(c) the distance to the edge of the slab.
525 526 527	1b.	Strength During Construction
527 528 529 530 531 532 533		When temporary shores are not used during construction, the structural steel section alone shall have sufficient strength to support all loads applied prior to the concrete attaining 75% of its specified strength, f_c' . The available flexural strength of the steel section shall be determined in accordance with Chapter F.
534 535	2.	Composite Beams with Steel Headed Stud or Steel Channel Anchors
536 537	2a.	Positive Flexural Strength
538 539		The design positive flexural strength, $\phi_b M_n$, and allowable positive flexural strength, M_n/Ω_b , shall be determined for the limit state of yielding as fol-
540 541		lows:
542 543		$\phi_b = 0.90 \text{ (LRFD)} \qquad \qquad \Omega_b = 1.67 \text{ (ASD)}$
544		(a) When $h/t_w \le 3.76\sqrt{E/F_y}$
545 546 547 548		M_n shall be determined from the plastic stress distribution on the composite section for the limit state of yielding (plastic moment).
549 550		User Note: All current ASTM A6 W, S and HP shapes satisfy the limit given in Section I3.2a(a) for $F_y \le 70$ ksi (485 MPa).
551 552		(b) When $h/t_w > 3.76\sqrt{E/F_y}$
553 554 555 556 557		M_n shall be determined from the superposition of elastic stresses, considering the effects of shoring, for the limit state of yielding (yield moment).
558 559	2b.	Negative Flexural Strength
560 561 562		The available negative flexural strength shall be determined for the structural steel section alone, in accordance with the requirements of Chapter F.
562 563 564 565 566		Alternatively, the available negative flexural strength shall be determined from the plastic stress distribution for the composite section, for the limit state of yielding (plastic moment), with
567 568		$\phi_b = 0.90 \text{ (LRFD)} \qquad \qquad \Omega_b = 1.67 \text{ (ASD)}$

569 provided that the following limitations are met: 570 571 The steel beam is compact and is braced in accordance with Chapter F. (a) 572 573 Steel headed stud or steel channel anchors connect the slab to the steel (b) 574 beam in the negative moment region. 575 The slab longitudinal reinforcement parallel to the steel beam, within 576 (c) the effective width of the slab, meets the development length require-577 578 ments. 579 580 User Note: To check compactness of a composite beam in negative flexure, 581 Case 10 in Table B4.1 is appropriate to use for flanges, and Case 16 of Table 582 B4.1 is appropriate to use for webs. 583 584 2c. **Composite Beams with Formed Steel Deck** 585 586 1. General 587 The available flexural strength of composite construction consisting of 588 concrete slabs on formed steel deck connected to steel beams shall be 589 590 determined by the applicable portions of Sections I3.2a and I3.2b, with the following requirements: 591 592 593 (a) The nominal rib height shall not be greater than 3 in. (75 mm). The 594 average width of concrete rib or haunch, w_r , shall be not less than 595 2 in. (50 mm), but shall not be taken in calculations as more than 596 the minimum clear width near the top of the steel deck. 597 598 (b) The concrete slab shall be connected to the steel beam with steel 599 headed stud anchors welded either through the deck or directly to the steel cross section. Steel headed stud anchors, after installation, 600 601 shall extend not less than 1-1/2 in. (38 mm) above the top of the 602 steel deck and there shall be at least 1/2 in. (13 mm) of specified concrete cover above the top of the steel headed stud anchors. 603 604 605 (c) The slab thickness above the steel deck shall be not less than 2 in. (50 mm). 606 607 608 (d) Steel deck shall be anchored to all supporting members at a spacing not to exceed 18 in. (460 mm). Such anchorage shall be provided 609 by steel headed stud anchors, a combination of steel headed stud 610 anchors and arc spot (puddle) welds, or other devices specified by 611 612 the design documents and specifications issued for construction. 613 614 2. **Deck Ribs Oriented Perpendicular to Steel Beam** 615 616 Concrete below the top of the steel deck shall be neglected in determining composite section properties and in calculating A_c for deck ribs ori-617 618 ented perpendicular to the steel beams. 619 **Deck Ribs Oriented Parallel to Steel Beam** 620 3. 621 Concrete below the top of the steel deck is permitted to be included in 622 623 determining composite section properties and in calculating A_c .

624

625		Formed steel deck ribs over supporting beams are permitted to be sp	lit
626		longitudinally and separated to form a concrete haunch.	110
		longitudinany and separated to form a concrete naunch.	
627			
628		When the nominal depth of steel deck is $1-1/2$ in. (38 mm) or greated	
629		the average width, w_r , of the supported haunch or rib shall be not le	SS
630		than 2 in. (50 mm) for the first steel headed stud anchor in the transver	se
631		row plus four stud diameters for each additional steel headed stud a	
632		chor.	
633	• •		
634	2d.	Load Transfer Between Steel Beam and Concrete Slab	
635			
636		1. Load Transfer for Positive Flexural Strength	
637			
638		The entire horizontal shear at the interface between the steel beam an	nd
639		the concrete slab shall be assumed to be transferred by steel headed st	
		•	
640		or steel channel anchors, except for concrete-encased beams as define	
641		in Section I3.3. For composite action with concrete subject to flexur	
642		compression, the nominal shear force between the steel beam and the	he
643		concrete slab transferred by steel anchors, V', between the point of ma	х-
644		imum positive moment and the point of zero moment shall be dete	
645		mined as the lowest value in accordance with the limit states of concre	
646			
		crushing, tensile yielding of the steel section, or the shear strength	01
647		the steel anchors:	
648			
649		(a) Concrete crushing	
650			
651		$V' = 0.85 f'_c A_c \tag{13-1}$	a)
)
652			
653		(b) Tensile yielding of the steel section	
654			
655		$V' = F_{y}A_{s} \tag{I3-1}$	b)
656			
		(a) Share store that fate the data to day store the second second second	
657		(c) Shear strength of steel headed stud or steel channel anchors	
658			
659		$V' = \Sigma Q_n \tag{I3-1}$	c)
660			
661		where	
662		A_c = area of concrete slab within effective width, in. ² (mm ²)	
663		A_s = cross-sectional area of steel section, in. ² (mm ²)	
664		ΣQ_n = sum of nominal shear strengths of steel headed stud or ste	el
665		$\mathcal{L}_{\mathcal{L}_{n}}$ channel anchors between the point of maximum positiv	
			vc
666		moment and the point of zero moment, kips (N)	
667			
668		The effect of ductility (slip capacity) of the shear connection at the i	n-
669		terface of the concrete slab and the steel beam shall be considered.	
670			
671		2. Load Transfer for Negative Flexural Strength	
672		······································	
673		In continuous composite hearry where longitudinal winforcing steel	in
		In continuous composite beams where longitudinal reinforcing steel	
674		the negative moment regions is considered to act compositely with the	
675		steel beam, the total horizontal shear between the point of maximu	
676		negative moment and the point of zero moment shall be determined	as
677		the lower value in accordance with the following limit states:	
678			
010			

	$V' = F_{vsr} A_{sr} \tag{13-2}$
	where
	A_{sr} = area of developed longitudinal reinforcing steel within the effective width of the concrete slab, in. ² (mm ²) F_{ysr} = specified minimum yield stress of the reinforcing steel, k (MPa)
	(b) For the limit state of shear strength of steel headed stud or steechannel anchors
	$V' = \Sigma Q_n \tag{I3-2}$
3.	Encased Composite Members
3 a.	Limitations
	For encased composite members, the following limitations shall be met:
	(a) The available flexural strength of concrete-encased members shall determined as follows:
	determined as follows.
	$\phi_b = 0.90 \text{ (LRFD)} \qquad \qquad \Omega_b = 1.67 \text{ (ASD)}$
	The nominal flexural strength, M_n , shall be determined using one of the following methods:
	 The superposition of elastic stresses on the composite section, consi ering the effects of shoring for the limit state of yielding (yield m ment).
	inent).
	(2) The plastic stress distribution on the steel section alone, for the lin state of yielding (plastic moment) on the steel section.
	(3) The plastic stress distribution on the composite section or the strai compatibility method, for the limit state of yielding (plastic momer on the composite section. For concrete-encased members, steel a chors shall be provided.
	(b) The total cross-sectional area of the steel core shall comprise at lea 1% of the total composite cross section.
	(c) Concrete encasement of the steel core shall be reinforced with conti uous longitudinal bars and transverse reinforcement (stirrups, tie hoops, or spirals).
	Detailing of longitudinal reinforcement, including bar spacing an concrete cover requirements, shall conform to ACI 318.
	Transverse reinforcement that consists of stirrups, ties, or hoops sha be a minimum of either a No. 3 (10 mm) bar spaced at a maximum 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced a maximum of 16 in. (400 mm) on center. Deformed wire or weld

	(d) The minimum reinforcement ratio for continuous longitudinal rein-
	forcement, ρ_{sr} , shall be 0.004, where ρ_{sr} is given by:
	$\rho_{sr} = \frac{A_{sr}}{A_g} \tag{I3-3}$
	where
	A_g = gross area of composite member, in. ² (mm ²)
	A_{sr} = area of continuous reinforcing bars, in. ² (mm ²)
	(e) Composite beam members with $P_u < 0.10P_n$ shall be tension controlled
	as defined in ACI 318. The determination of P_n shall include the area
	of both the structural steel section and the longitudinal reinforcement.
	User Note: The effect of this limitation is to restrict the reinforcement ratio
	to provide ductile behavior in case of an overload. Refer to ACI 318 for
	additional longitudinal and transverse steel provisions. Refer to Section I4
	for shear requirements.
3b.	Detailing Requirements
	Clear spacing between the steel core and longitudinal reinforcing steel shall
	be a minimum of 1.5 reinforcing bar diameters, but not less than 1.5 in. (38
	mm).
4	Filled Composite Members
4.	Filled Composite Members
4 a.	Limitations
	For filled composite members, the following limitations shall be met:
	(a) Filled composite sections shall be classified for local buckling accord-
	ing to Section I1.4.
	(b) The total cross-sectional area of the structural steel section shall com-
	prise at least 1% of the total composite cross section.
	c) Longitudinal reinforcement is not required.
	Where longitudinal reinforcement is provided, the minimum reinforce-
	ment ratio for continuous longitudinal reinforcement, ρ_{sr} , shall be
	0.004, where ρ_{sr} is given by:
	$\rho_{sr} = \frac{A_{sr}}{2} \tag{I3-4}$
	$\rho_{sr} = \frac{A_{sr}}{A_g} \tag{I3-4}$
	$\rho_{sr} = \frac{A_{sr}}{A_g} $ (I3-4) If longitudinal reinforcement is provided, internal transverse reinforce-
	δ
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein-
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini-
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini- mum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini- mum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini- mum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire rein-
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini- mum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum
	If longitudinal reinforcement is provided, internal transverse reinforce- ment is not required for strength; however, minimum internal trans- verse reinforcement shall be provided. The minimum transverse rein- forcement shall be hoops and ties or hoops alone consisting of a mini- mum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire rein- forcement of equivalent area is permitted.
	 If longitudinal reinforcement is provided, internal transverse reinforcement is not required for strength; however, minimum internal transverse reinforcement shall be provided. The minimum transverse reinforcement shall be hoops and ties or hoops alone consisting of a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire reinforcement of equivalent area is permitted. (d) Composite beam members with P_u < 0.10P_n shall be tension controlled
	 If longitudinal reinforcement is provided, internal transverse reinforcement is not required for strength; however, minimum internal transverse reinforcement shall be provided. The minimum transverse reinforcement shall be hoops and ties or hoops alone consisting of a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire reinforcement of equivalent area is permitted. (d) Composite beam members with P_u < 0.10P_n shall be tension controlled as defined in ACI 318. The determination of P_n shall include the area
	 If longitudinal reinforcement is provided, internal transverse reinforcement is not required for strength; however, minimum internal transverse reinforcement shall be provided. The minimum transverse reinforcement shall be hoops and ties or hoops alone consisting of a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (300 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (400 mm) on center. Deformed wire or welded wire reinforcement of equivalent area is permitted. (d) Composite beam members with P_u < 0.10P_n shall be tension controlled

787 User Note: The effect of this limitation is to restrict the longitudinal rein-788 forcement ratio to provide ductile behavior in case of an overload. Refer to 789 ACI 318 for additional provisions for the longitudinal and transverse steel 790 reinforcement. Refer to Section I4 for shear requirements. The limitations 791 and requirements of Section I3.4a are not applicable to composite plate shear 792 walls. 793 794 4b. **Flexural Strength** 795 796 The available flexural strength of filled composite members shall be deter-797 mined as follows: 798 $\phi_b = 0.90 \text{ (LRFD)}$ $\Omega_b = 1.67 \text{ (ASD)}$ 799 800 801 The nominal flexural strength, M_n , shall be determined as follows: 802 803 For compact composite sections (a) 804 $M_n = M_p$ (I3-3a) 805 806 807 where M_p = moment corresponding to plastic stress distribution over 808 809 the composite cross section, kip-in. (N-mm) 810 For noncompact composite sections 811 (b) $M_n = M_p - (M_p - M_y) \left(\frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \right)$ (I3-3b) 812 813 814 where λ , λ_p and λ_r are width-to-thickness ratios determined from Table 815 816 I1.1b. 817 M_y = yield moment corresponding to yielding of the tension 818 flange and first yield of the compression flange, kip-in. 819 (N-mm). The capacity at first yield shall be calculated as-820 suming a linear elastic stress distribution with the maxi-821 mum concrete compressive stress limited to $0.7f'_{c}$ and the 822 maximum steel stress limited to F_{y} . 823 (c) For slender-element composite sections, M_n , shall be determined as the 824 825 first yield moment. The compression flange stress shall be limited to the local buckling stress, F_n , determined using Equation I2-10 or I2-826 827 11. The concrete stress distribution shall be linear elastic with the max-828 imum compressive stress limited to $0.70f'_c$. 829 830 4c. **Detailing Requirements** 831 832 Clear spacing between the inside of the steel section and longitudinal reinforcing steel where provided shall be a minimum of 1.5 reinforcing bar di-833 834 ameters, but not less than 1.5 in. (38 mm). 835 5. **Composite Plate Shear Walls** 836 837 The available flexural strength of composite plate shear walls shall be deter-838 839 mined in accordance with Section I1.2, where

940		
840 841		$\phi_b = 0.90 (\text{LRFD})$ $\Omega_b = 1.67 (\text{ASD})$
842		$\Psi_b = 0.90 (LKFD)$ $\Omega_b = 1.07 (ASD)$
843	I4.	SHEAR
844	14.	SHERK
845	1.	Encased Composite Members
846		
847		The design shear strength, $\phi_v V_n$, and allowable shear strength, V_n / Ω_v , of en-
848		cased composite members shall be determined based on one of the follow-
849		ing:
850		-
851		(a) The available shear strength of the structural steel section alone as spec-
852		ified in Chapter G
853		
854		(b) The available shear strength of the reinforced concrete portion (concrete
855		plus transverse reinforcement) alone as defined by ACI 318 with
856		
857		$\phi_{\nu} = 0.75 \text{ (LRFD)} \qquad \Omega_{\nu} = 2.00 \text{ (ASD)}$
858		
859 860		(c) The nominal shear strength of the structural steel section, as defined in Chapter G, plus the nominal strength of the transverse reinforcement, as
860 861		defined by ACI 318, with a combined resistance or safety factor of
862		defined by AC1 518, with a combined resistance of safety factor of
862		$\phi_{\nu} = 0.75 (\text{LRFD})$ $\Omega_{\nu} = 2.00 (\text{ASD})$
805		$\psi_{\nu} = 0.75 (\text{LM D})$ 52ν 2.00 (ASD)
	-	
864	2.	Filled Composite Members
865		
866		The design shear strength, $\phi_{\nu}V_n$, and allowable shear strength, V_n/Ω_{ν} , of filled
867		composite members shall be determined as follows:
868		$\phi_{\nu} = 0.90 (\text{LRFD})$ $\Omega_{\nu} = 1.67 (\text{ASD})$
869 870		$\varphi_v = 0.90 \text{ (LRFD)} \qquad \Omega_v = 1.67 \text{ (ASD)}$
870 871		The nominal shear strength, V_n , shall include the contributions of the struc-
871		tural steel section and concrete infill as follows:
072		tural siter section and concrete mini as ronows.
072		$V = 0.6AE \pm 0.06KA f'$
873		$V_n = 0.6A_v F_y + 0.06K_c A_c \sqrt{f_c'} $ (I4-1)
874		where
875		A_v = Shear area of the steel portion of a composite member. The shear
876		area for a round section is equal to $2A_s/\pi$, and for a rectangular sec-
877		tion is equal to the sum of the area of webs in the direction of in-
878		plane shear, in. ² (mm ²)
879		A_c = Area of concrete infill, in. ² (mm ²)
880		$K_c = 1$ for members with shear span-to-depth, $(M_u/V_u)/d$, greater than or
881		equal to 0.7, where M_u and V_u are equal to the maximum required
882		flexural and shear strengths, respectively, along the member length,
883		and d is equal to the member depth in the direction of bending $K = 10$ for members with restoregular common comparison sections.
884		$K_c = 10$ for members with rectangular compact composite cross sections and $(M/V)/d\log then 0.5$
885 886		and $(M_u/V_u)/d$ less than 0.5 K = 0 for members with round compact composite cross sections and
886 887		$K_c = 9$ for members with round compact composite cross sections and $(M/V)/d \log t \ln 0.5$
888		$(M_u/V_u)/d$ less than 0.5 $K_c = 1$ for members having other than compact composite cross sections,
889		$K_c = 1$ for members having other than compact composite cross sections, for all values of $(M_u/V_u)/d$
890		
070		

891 892 893		Linear interpolation between the above K_c values shall be used for members with compact composite cross sections and $(M_u/V_u)/d$ between 0.5 and 0.7.
894 895 896 897	may	r Note: For most members, K_c will be equal to 1.0. Low shear span-to-depth ratios occur in connection design (panel zones) or other special situations, for which her values of K_c (> 1.0) are more appropriate.
898	3.	Composite Beams with Formed Steel Deck
899 900 901 902		The available shear strength of composite beams with steel headed stud or steel channel anchors shall be determined based upon the properties of the steel section alone in accordance with Chapter G.
902 903	4.	Composite Plate Shear Walls
904 905		The design in-plane shear strength, $\phi_{\nu}V_n$, and allowable shear strength, V_n/Ω_{ν} , of composite plate shear walls shall be determined as follows:
906 907		$\phi_{\nu} = 0.90 \; (LRFD) \qquad \Omega_{\nu} = 1.67 \; (ASD)$
908 909 910		The nominal shear strength, V_n , shall account for the contributions of the structural steel section and concrete infill as follows:
911 912		$V_{n} = \frac{K_{s} + K_{sc}}{\sqrt{3K_{s}^{2} + K_{sc}^{2}}} A_{sw} F_{y} $ (I4-2)
913		
914		where
915		A_{sw} = area of steel plates in the direction of in-plane shear, in. ² (mm ²)
916		$K_s = G_s A_{sw} \tag{I4-3}$
917 918		G_s = shear modulus of steel = 11,200 ksi (77 200 MPa)
910		
919		$K_{sc} = \frac{0.7(E_c A_c)(E_s A_{sw})}{4E_s A_{sw} + E_c A_c} $ (I4-4)
920		
921	15.	COMBINED FLEXURE AND AXIAL FORCE
922		

The interaction between flexure and axial forces in composite members shall account for stability as required by Chapter C. The available compressive strength and the available flexural strength shall be determined as defined in Sections I2 and I3, respectively. To account for the influence of length effects on the axial strength of the member, the nominal axial strength of the member shall be determined in accordance with Section I2.

923

924

925

926

927

928

929 930

931

932

933

934 935

936

937

938

939

- (a) For encased composite members and for filled composite members with compact composite sections, the interaction between axial force and flexure shall be based on the interaction equations of Section H1.1 or one of the methods defined in Section I1.2.
- (b) For filled composite members with noncompact composite or slender-element composite sections, the interaction between axial force and flexure shall be based either on the interaction equations of Section H1.1, the method defined in Section I1.2d, or Equations I5-1a and b.

940 (1) When
$$\frac{P_r}{P_c} \ge c_p$$

$$\frac{P_r}{P_c} + \frac{1 - c_p}{c_m} \left(\frac{M_r}{M_c}\right) \le 1.0$$
(I5-1a)

943 (2) When
$$\frac{P_r}{P_c} < c_p$$

944

 $\left(\frac{1-c_m}{c_p}\right)\left(\frac{P_r}{P_c}\right) + \frac{M_r}{M_c} \le 1.0$ (I5-1b)

945 946

Table I5.1 Coefficients c_p and c_m for Use with Equations I5-1a and I5-1b			
Filled Compo- site		Cm	
Member Type	Cp	when <i>c_{sr}</i> ≥ 0.5	when <i>c_{sr}</i> < 0.5
Rectangular	$c_p = \frac{0.17}{c_{sr}^{0.4}}$	31	$c_m = \frac{0.90}{c_{sr}^{0.36}} \le 1.67$
Round HSS	$c_p = \frac{0.27}{c_{sr}^{0.4}}$	$c_m = \frac{1.10}{c_{sr}^{0.08}} \ge 1.0$	$c_m = \frac{0.95}{c_{\rm sr}^{0.32}} \le 1.67$

947

74 /	
948	where
949	
950	For design according to Section B3.1 (LRFD):
951	
952	M_r = required flexural strength, determined in accordance with
953	Section I1.5, using LRFD load combinations, kip-in. (N-
954	mm)
955	$M_c = \phi_b M_n$ = design flexural strength determined in accordance
956	with Section I3, kip-in. (N-mm)
957	P_r = required axial strength, determined in accordance with
958	Section I1.5, using LRFD load combinations, kips (N)
959	$P_c = \phi_c P_n$ = design axial strength, determined in accordance
960	with Section I2, kips (N)
961	ϕ_c = resistance factor for compression = 0.75
962	ϕ_b = resistance factor for flexure = 0.90
963	
964	For design according to Section B3.2 (ASD):
965	
966	M_r = required flexural strength, determined in accordance with
967	Section I1.5, using ASD load combinations, kip-in. (N-
968	mm)
969	$M_c = M_n / \Omega_b$ = allowable flexural strength, determined in ac-
970	cordance with Section I3, kip-in. (N-mm)
971	P_r = required axial strength, determined in accordance with
972	Section I1.5, using ASD load combinations, kips (N)
973	$P_c = P_n / \Omega_c$ = allowable axial strength, determined in accord-
974	ance with Section I2, kips (N)

975		Ω_c = safety factor for compression = 2.00
976		Ω_b = safety factor for flexure = 1.67
977		
978		c_m and c_p are determined from Table I5.1
979		$c_{sr} = \frac{A_s F_y + A_{sr} F_{yr}}{A_c f_c'} \tag{I5-2}$
980		(c) For composite plate shear walls, the interaction between axial force and
981		flexure shall be based on the methods defined in Section I1.2.
982	- /	
983	I6.	LOAD TRANSFER
984 985	1.	Conoral Paguiromanta
986	1.	General Requirements
987		When external forces are applied to an axially loaded encased or filled compo-
988		site member, the introduction of force to the member and the transfer of longi-
989		tudinal shear within the member shall be assessed in accordance with the re-
990		quirements for force allocation presented in this section.
991		
992		The available strength of the applicable force transfer mechanisms as deter-
993		mined in accordance with Section I6.3 shall equal or exceed the required shear
994		force to be transferred, V'_r , as determined in accordance with Section I6.2.
995		Force transfer mechanisms shall be located within the load transfer region as
996		determined in accordance with Section I6.4.
997 208	2.	Forma Allocation
998 999	4.	Force Allocation
)00		Force allocation shall be determined based upon the distribution of external
001		force in accordance with the following requirements.
002		
003		User Note: Bearing strength provisions for externally applied forces are pro-
004		vided in Section J8. For filled composite members, the term $\sqrt{A_2/A_1}$ in Equa-
005		
)05)06		tion J8-2 may be taken equal to 2.0 due to confinement effects.
007	2a.	External Force Applied to Steel Section
008		
009		When the entire external force is applied directly to the steel section, the force
010		required to be transferred to the concrete, V'_r , shall be determined as:
011		
)12		$V_r' = P_r \left(1 - F_v A_s / P_{no} \right) $ (I6-1)
013		
)14		where
)15		P_{no} = nominal axial compressive strength without consideration of length
)16		effects, determined by Equation I2-4 for encased composite mem-
)17		bers, and Equation I2-9a or Equation I2-9c, as applicable, for com-
018		pact composite or noncompact composite filled composite mem-
)19		bers, kips (N)
)20		P_r = required external force applied to the composite member, kips (N)
021 022		User Note: Equation I6-1 does not apply to slender filled composite members
)22		for which the external force is applied directly to the concrete fill in accordance
)23)24		with Section I6.2b, or concurrently to the steel and concrete, in accordance with
)25		Section I6.2c.
026		
		Specification for Structural Steel Buildings, xx, 2022
		Draft Dated January 5, 2022

I-21

	External Force Applied to Concrete
	When the entire external force is applied directly to the concrete exceedence
	When the entire external force is applied directly to the concrete encasement or concrete fill, the force required to be transferred to the steel, V'_r , shall be
	determined as follows:
	determined as follows.
	(a) For encased or filled composite members that are compact composite or
	noncompact composite
	r
	$V_r' = P_r \left(F_v A_s / P_{no} \right) \tag{I6-2a}$
	(b) For slender filled composite members
	(b) For sichael milea composite memoers
	$V_r' = P_r \left(F_n A_s / P_{no} \right) \tag{I6-2b}$
	$V_r = P_r \left(\Gamma_n A_s / P_{no} \right) \tag{10-20}$
	where
	F_n = critical buckling stress for steel elements of filled composite mem-
	bers determined using Equation I2-10 or Equation I2-11, as appli-
	cable, ksi (MPa) P_{no} = nominal axial compressive strength without consideration of length
	P_{no} – nonlinear axial compressive strength without consideration of rength effects, determined by Equation I2-4 for encased composite mem-
	bers, and Equation I2-9a, Equation I2-9c, or Equation I2-9e for
	filled composite members, kips (N)
2c.	External Force Applied Concurrently to Steel and Concrete
	When the external force is applied concurrently to the steel section and concrete
	encasement or concrete fill, V'_r shall be determined as the force required to es-
	encasement or concrete fill, V'_r shall be determined as the force required to establish equilibrium of the cross section.
	encasement or concrete fill, V'_r shall be determined as the force required to es- tablish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining
	encasement or concrete fill, V'_r shall be determined as the force required to establish equilibrium of the cross section.
2	encasement or concrete fill, V'_r shall be determined as the force required to es- tablish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section.
3.	encasement or concrete fill, V'_r shall be determined as the force required to es- tablish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interac-
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond fail-
3.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-imposed. The force transfer mechanism of direct bond interaction shall not be used for
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-imposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip.
3. 3a.	 encasement or concrete fill, V'r shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond fail-
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-imposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-imposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the concrete for the limit state of concrete crushing shall be determined as:
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the
	 encasement or concrete fill, V', shall be determined as the force required to establish equilibrium of the cross section. User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section. Force Transfer Mechanisms The available strength of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be super-imposed. The force transfer mechanism of direct bond interaction shall not be used for encased composite members or for filled composite members where bond failure would result in uncontrolled slip. Direct Bearing Where force is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the concrete for the limit state of concrete crushing shall be determined as:

1081		
1082		where
1083		$A_1 = $ loaded area of concrete, in. ² (mm ²)
1084		
1085		User Note: An example of force transfer via an internal bearing mechanism is
1086		the use of internal steel plates within a filled composite member.
1087		
1088	3b.	Shear Connection
1089		
1090		Where force is transferred in an encased or filled composite member by shear
1091		connectors, the available shear strength of steel headed stud or steel channel
1092		anchors shall be determined as:
1093		
1094		$R_c = \Sigma Q_{cv} \tag{16-4}$
1095		
1096		where
1097		ΣQ_{cv} = sum of available shear strengths, $\phi_{\nu}Q_{n\nu}$ (LRFD) or $Q_{n\nu}/\Omega_{\nu}$ (ASD),
1098		as applicable, of steel headed stud or steel channel anchors, deter-
1099		mined in accordance with Section I8.3a or Section I8.3d, respec-
1100		tively, placed within the load introduction length as defined in
1101		Section I6.4, kips (N)
1102		
1103	3c.	Direct Bond Interaction
1104		
1105		Where force is transferred in a filled composite member by direct bond inter-
1106		action, the available bond strength between the steel and concrete shall be de-
1107		termined as follows:
1108		
1109		$R_n = p_b L_{in} F_{in} \tag{I6-5}$
1110		
1111		$\phi_d = 0.50 \text{ (LRFD)} \qquad \Omega_d = 3.00 \text{ (ASD)}$
1112		
1113		
1114		where
1115		D = outside diameter of round HSS, in. (mm)
1115		D = outside diameter of round HSS, in. (mm) F_{in} = nominal bond stress, ksi (MPa)
1115 1116		D = outside diameter of round HSS, in. (mm)
		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \end{array}$
1116		D = outside diameter of round HSS, in. (mm) F_{in} = nominal bond stress, ksi (MPa) = $12t/H^2 \le 0.1$, ksi ($2100t/H^2 \le 0.7$, MPa) for rectangular cross sec-
1116 1117 1118		D = outside diameter of round HSS, in. (mm) $F_{in} = \text{nominal bond stress, ksi (MPa)}$ $= 12t/H^{2} \le 0.1, \text{ ksi } (2100t/H^{2} \le 0.7, \text{ MPa}) \text{ for rectangular cross sections}$ $= 30t/D^{2} \le 0.2, \text{ ksi } (5300t/D^{2} \le 1.4, \text{ MPa}) \text{ for round cross sections}$
1116 1117 1118 1119		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in.} \end{array}$
1116 1117 1118		D = outside diameter of round HSS, in. (mm) $F_{in} = \text{nominal bond stress, ksi (MPa)}$ $= 12t/H^{2} \le 0.1, \text{ ksi } (2100t/H^{2} \le 0.7, \text{ MPa}) \text{ for rectangular cross sections}$ $= 30t/D^{2} \le 0.2, \text{ ksi } (5300t/D^{2} \le 1.4, \text{ MPa}) \text{ for round cross sections}$
1116 1117 1118 1119 1120		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \end{array}$
1116 1117 1118 1119 1120 1121		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \end{array}$
1116 1117 1118 1119 1120 1121 1122		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123 1124		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128		$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)} \\ t &= \text{design wall thickness of HSS member as defined in Section B4.2, in. (mm)} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129	4.	$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)} \\ t &= \text{design wall thickness of HSS member as defined in Section B4.2, in.} \end{array}$
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130		D = outside diameter of round HSS, in. (mm) $F_{in} = \text{nominal bond stress, ksi (MPa)}$ $= 12t/H^{2} \le 0.1, \text{ ksi } (2100t/H^{2} \le 0.7, \text{ MPa}) \text{ for rectangular cross sections}$ $= 30t/D^{2} \le 0.2, \text{ ksi } (5300t/D^{2} \le 1.4, \text{ MPa}) \text{ for round cross sections}$ H = maximum transverse dimension of rectangular steel member, in. (mm) $L_{in} = \text{load introduction length, determined in accordance with Section I6.4, in. (mm)}$ $R_{n} = \text{nominal bond strength, kips (N)}$ $p_{b} = \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)}$ t = design wall thickness of HSS member as defined in Section B4.2, in. (mm) Detailing Requirements
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131	4. 4a.	$\begin{array}{ll} D &= \text{outside diameter of round HSS, in. (mm)} \\ F_{in} &= \text{nominal bond stress, ksi (MPa)} \\ &= 12t/H^2 \leq 0.1, \text{ ksi } (2100t/H^2 \leq 0.7, \text{ MPa}) \text{ for rectangular cross sections} \\ &= 30t/D^2 \leq 0.2, \text{ ksi } (5300t/D^2 \leq 1.4, \text{ MPa}) \text{ for round cross sections} \\ H &= \text{maximum transverse dimension of rectangular steel member, in. (mm)} \\ L_{in} &= \text{load introduction length, determined in accordance with Section I6.4, in. (mm)} \\ R_n &= \text{nominal bond strength, kips (N)} \\ p_b &= \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)} \\ t &= \text{design wall thickness of HSS member as defined in Section B4.2, in. (mm)} \end{array}$
11116 11117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130		D = outside diameter of round HSS, in. (mm) $F_{in} = \text{nominal bond stress, ksi (MPa)}$ $= 12t/H^{2} \le 0.1, \text{ ksi } (2100t/H^{2} \le 0.7, \text{ MPa}) \text{ for rectangular cross sections}$ $= 30t/D^{2} \le 0.2, \text{ ksi } (5300t/D^{2} \le 1.4, \text{ MPa}) \text{ for round cross sections}$ H = maximum transverse dimension of rectangular steel member, in. (mm) $L_{in} = \text{load introduction length, determined in accordance with Section I6.4, in. (mm)}$ $R_{n} = \text{nominal bond strength, kips (N)}$ $p_{b} = \text{perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)}$ t = design wall thickness of HSS member as defined in Section B4.2, in. (mm) Detailing Requirements

1133Force transfer mechanisms shall be distributed within the load introduction1134length, which shall not exceed a distance of two times the minimum transverse

I-24

dimension of the encased composite member above and below the load transfer
region. Anchors utilized to transfer shear shall be placed on at least two faces
of the structural steel shape in a generally symmetric configuration about the
steel shape axes.

Steel anchor spacing, both within and outside of the load introduction length,shall conform to Section I8.3e.

1143 **4b.** Filled Composite Members

1144 1145

1146

1147

1148

1149 1150

1151

1152 1153

1154

1156 1157

1158 1159

1160

1161

1162 1163

1165

1167 1168

1169

1170

1171

1172

1173

1177

1179 1180

1181

1182 1183

1189

Force transfer mechanisms shall be distributed within the load introduction length, which shall not exceed a distance of two times the minimum transverse dimension of a rectangular steel member or two times the diameter of a round steel member both above and below the load transfer region. For the specific case of load applied to the concrete of a filled composite member containing no internal longitudinal reinforcement, the load introduction length shall extend beyond the load transfer region in only the direction of the applied force. Steel anchor spacing within the load introduction length shall conform to Section I8.3e.

1155 I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS

Composite slab diaphragms and collector beams shall be designed and detailed to transfer loads between the diaphragm, the diaphragm's boundary members and collector elements, and elements of the lateral force-resisting system.

User Note: Design guidelines for composite diaphragms and collector beams can be found in the Commentary.

1164 I8. STEEL ANCHORS

1166 **1. General**

The diameter of a steel headed stud anchor, d_{sa} , shall be 3/4 in. (19 mm) or less, except where anchors are utilized solely for shear transfer in solid slabs in which case 7/8-in.- (2 mm) and 1-in.- (25 mm) diameter anchors are permitted. Additionally, d_{sa} shall not be greater than 2.5 times the thickness of the base metal to which it is welded, unless it is welded to a flange directly over a web.

1174Section I8.2 applies to a composite flexural member where steel anchors are1175embedded in a solid concrete slab or in a slab cast on a formed steel deck. Sec-1176tion I8.3 applies to all other cases.

1178 2. Steel Anchors in Composite Beams

The length of steel headed stud anchors shall not be less than four stud diameters from the base of the steel headed stud anchor to the top of the stud head after installation.

1184 2a. Strength of Steel Headed Stud Anchors1185

1186The nominal shear strength of one steel headed stud anchor embedded in a solid1187concrete slab or in a composite slab with decking shall be determined as fol-1188lows:

$$Q_n = 0.5A_{sa}\sqrt{f_c'E_c} \le R_g R_p A_{sa} F_u \tag{I8-1}$$

1100				
190	1			
1191	where		1 1 4 1	• 2 (2)
192	A_{sa}	= cross-sectional area of steel h		<i>z</i> , in. ² (mm ²)
1193	E_c	= modulus of elasticity of conce		
194		$= w_c^{1.5} \sqrt{f_c'}$, ksi (0.043 $w_c^{1.5} \sqrt{f_c'}$		
195	F_u	= specified minimum tensile s	strength of a steel	headed stud an-
196		chor, ksi (MPa)		
197	R_g	= 1.0 for:		
198		(a) One steel headed stud and	chor welded in a st	eel deck rib with
199		the deck oriented perpendicu	ular to the steel sh	ape
200		(b) Any number of steel hea	ded stud anchors	welded in a row
201		directly to the steel shape		
202		(c) Any number of steel hea		
203		through steel deck with the	deck oriented par	allel to the steel
204		shape and the ratio of the av	erage rib width to	rib depth ≥ 1.5
205		= 0.85 for:		
206		(a) Two steel headed stud an		
207		with the deck oriented perpe		
208		(b) One steel headed stud ancl		
209		the deck oriented parallel to		d the ratio of the
210		average rib width to rib dept		
211		= 0.7 for three or more steel		
212		steel deck rib with the deck	oriented perpendic	cular to the steel
213		shape		
214	R_p	= 0.75 for:		
1215		(a) Steel headed stud anchor		
216		(b) Steel headed stud anchor	V V V V V V V V V V V V V V V V V V V	-
1217		the deck oriented perpendic	ular to the beam a	nd $e_{mid-ht} \ge 2$ in.
218		(50 mm)		
219		(c) Steel headed stud anch		
220		steel sheet used as girder fi		
221		composite slab with the decl		
222		= 0.6 for steel headed stud an		
223		with deck oriented perpendi	cular to the beam	and $e_{mid-ht} < 2$
224		in. (50 mm)		
225	e_{mid}			
226		steel deck web, measured at	0	
227		the load bearing direction o		
228		other words, in the direction	of maximum mon	ent for a simply
229		supported beam), in. (mm)		
230				
231		Note: The table below presents val		
232		lable strengths for steel headed stud	anchors can be fo	und in the AISC
233	Steel	Construction Manual.		
234				-
		ondition	R_g	R p
		decking	1.0	0.75

Condition	R_g	R _ρ
No decking	1.0	0.75
Decking oriented parallel to the steel shape		
$\frac{w_r}{h} \ge 1.5$	1.0	0.75
$\frac{w_r}{h_r} < 1.5$	0.85 ^[a]	0.75
Decking oriented perpendicular		

	to the steel shape		
	Number of steel headed stud an-		
	chors occupying the same		
	decking rib:	4.0	
	1	1.0	0.6 ^[b]
	2	0.85	0.6 ^[b]
	3 or more	0.7	0.6 ^[b]
	h_r = nominal rib height, in. (mm) average width of concrete rib or haunch (as d	efined in Section I3.2	2c), in. (mm)
	^[a] For a single steel headed stud anchor ^[b] This value may be increased to 0.75 when	<i>e_{mid-ht}</i> ≥ 2 in. (50 mm).
Str	rength of Steel Channel Anchors		
	nominal shear strength of one hot-rolle d concrete slab shall be determined as:	d channel anchor	embedded in a
	$Q_n = 0.3(t_f + 0.1)$	$(1.5t_w)l_a\sqrt{f_c'E_c}$	(I8-2)
whe			
	l_a = length of channel anchor, in. (mm) t_f = thickness of flange of channel anch t_w = thickness of channel anchor web, in		22)
	e strength of the channel anchor shall be one beam flange for a force equal to Q_n , c r.		
Rec	quired Number of Steel Anchors		
mer equa vide Sec any	e number of anchors required between the nt, positive or negative, and the adjacent al to the horizontal shear as determined i ed by the nominal shear strength of one tion I8.2a or Section I8.2b. The number concentrated load and the nearest point of levelop the maximum moment required at	section of zero n n Sections I3.2d.1 steel anchor as d of steel anchors re of zero moment sh	noment shall be and I3.2d.2 di- etermined from equired between all be sufficient
Det	ailing Requirements		
Stee	el anchors in composite beams shall meet	the following requ	irements:
(a)	Steel anchors required on each side of the ment, positive or negative, shall be distrib and the adjacent points of zero moment, design documents and specifications issu	outed uniformly be unless specified o	tween that point therwise on the
(b)	Steel anchors shall have at least 1 in. (2: the direction perpendicular to the shear t the ribs of formed steel decks.		
(c)	The minimum distance from the center of a ste of the shear force shall be 8 in. (200 mm) if no (250 mm) if lightweight concrete is used. The permitted to be used in lieu of these values.	rmal weight concrete	is used and 10 in.

2b.

2c.

2d.

1278 1279 1280 1281 1282		(d) Minimum center-to-center spacing of steel headed stud anchors shall be four diameters in any direction. For composite beams that do not contain anchors located within formed steel deck oriented perpendicular to the beam span, an additional minimum spacing limit of six diameters along the longitudinal axis of the beam shall apply.
1283 1284 1285 1286		(e) The maximum center-to-center spacing of steel anchors shall not exceed eight times the total slab thickness or 36 in. (900 mm).
1286 1287	3.	Steel Anchors in Composite Components
1288		·····
1289		This section shall apply to the design of cast-in-place steel headed stud anchors
1290		and steel channel anchors in composite components.
1291		
1292 1293		The provisions of the applicable building code or ACI 318 Chapter 17 are per- mitted to be used in lieu of the provisions in this section.
1294		
1295		User Note: The steel headed stud anchor strength provisions in this section are
1296		applicable to anchors located primarily in the load transfer (connection) region
1297 1298		of composite columns and beam-columns, concrete-encased and filled compo- site beams, composite coupling beams, and composite walls, where the steel
1298		and concrete are working compositely within a member. They are not intended
1300		for hybrid construction where the steel and concrete are not working compos-
1301		itely, such as with embed plates.
1302		·····, ·······························
1303		Section I8.2 specifies the strength of steel anchors embedded in a solid concrete
1304		slab or in a concrete slab with formed steel deck in a composite beam.
1305		
1306		Limit states for the steel shank of the anchor and for concrete breakout in shear
1307		are covered directly in this Section. Additionally, the spacing and dimensional
1308		limitations provided in these provisions preclude the limit states of concrete
1309		pryout for anchors loaded in shear and concrete breakout for anchors loaded in
1310		tension as defined by ACI 318 Chapter 17.
1311 1312		For normal weight concrete: Steel headed stud anchors subjected to shear only
1312		shall not be less than five stud diameters in length from the base of the steel
1313		headed stud to the top of the stud head after installation. Steel headed stud
1315		anchors subjected to tension or interaction of shear and tension shall not be less
1316		than eight stud diameters in length from the base of the stud to the top of the
1317		stud head after installation.
1318		
1319		For lightweight concrete: Steel headed stud anchors subjected to shear only
1320		shall not be less than seven stud diameters in length from the base of the steel
1321		headed stud to the top of the stud head after installation. Steel headed stud
1322		anchors subjected to tension shall not be less than ten stud diameters in length
1323		from the base of the stud to the top of the stud head after installation. The nom-
1324 1325		inal strength of steel headed stud anchors subjected to interaction of shear and tension for lightweight concrete shall be determined as stipulated by the appli-
1325		cable building code or ACI 318 Chapter 17.
1320		caore outraing code of ACI 510 Chapter 17.
1327		Steel headed stud anchors subjected to tension or interaction of shear and ten-
1329		sion shall have a diameter of the head greater than or equal to 1.6 times the
1330		diameter of the shank.
1331		
1332		User Note: The following table presents values of minimum steel headed stud
1333		anchor h/d ratios for each condition covered in this Specification.

Loading Con- dition	Normal Weight Concrete	Lightweight Con- crete
Shear	$h/d_{\rm sa} \ge 5$	$h/d_{sa} \ge 7$
Tension	$h/d_{\rm sa} \ge 8$	<i>h</i> / <i>d</i> _{sa} ≥10
Shear and Tension	<i>h</i> / <i>d</i> _{sa} ≥8	N/A ^[a]

 h/d_{sa} = ratio of steel headed stud anchor shank length to the top of the stud head, to shank diameter.

^[a] Refer to ACI 318 Chapter 17 for the calculation of interaction effects of anchors embedded in lightweight concrete.

1341

1342

1343 1344

1345

1346

1335

3a. Shear Strength of Steel Headed Stud Anchors in Composite Components

Where concrete breakout strength in shear is not an applicable limit state, the design shear strength, $\phi_{\nu}Q_{n\nu}$, and allowable shear strength, $Q_{n\nu}\Omega_{\nu}$, of one steel headed stud anchor shall be determined as:

$$Q_{nv} = F_u A_{sa} \tag{I8-3}$$

 $\phi_{\nu} = 0.65 \text{ (LRFD)} \qquad \qquad \Omega_{\nu} = 2.31 \text{ (ASD)}$

1510		
1347		where
1348		A_{sa} = cross-sectional area of a steel headed stud anchor, in. ² (mm ²)
1349		F_u = specified minimum tensile strength of a steel headed stud anchor,
1350		ksi (MPa)
1351		Q_{nv} = nominal shear strength of a steel headed stud anchor, kips (N)
1352		
1353		Where concrete breakout strength in shear is an applicable limit state, the avail-
1354		able shear strength of one steel headed stud anchor shall be determined by one
1355		of the following:
1356		
1357		(a) Where anchor reinforcement is developed in accordance with ACI 318
1358		on both sides of the concrete breakout surface for the steel headed stud
1359		anchor, the minimum of the steel nominal shear strength from Equation
1360		I8-3 and the nominal strength of the anchor reinforcement shall be used
1361		for the nominal shear strength, Q_{nv} , of the steel headed stud anchor.
1362		(b) As stipulated by the applicable building code or ACI 318 Chapter 17.
1363		
1364		User Note: If concrete breakout strength in shear is an applicable limit state (for
1365		example, where the breakout prism is not restrained by an adjacent steel plate,
1366		flange or web), appropriate anchor reinforcement is required for the provisions
1367		of this Section to be used. Alternatively, the provisions of the applicable build-
1368		ing code or ACI 318 Chapter 17 may be used.
1369		
1370	3b.	Tensile Strength of Steel Headed Stud Anchors in Composite Components
1371		

1372Where the distance from the center of an anchor to a free edge of concrete in1373the direction perpendicular to the height of the steel headed stud anchor is1374greater than or equal to 1.5 times the height of the steel headed stud anchor1375measured to the top of the stud head, and where the center-to-center spacing of1376steel headed stud anchors is greater than or equal to three times the height of

1380

1381

1382 1383 1384

1385

1386 1387

1388 1389

1390

1391

1392

1393 1394 1395

1396

1397

1398

1399

1400

1401 1402

1403

1404

1405

1406

1419

1420

1421

the steel headed stud anchor measured to the top of the stud head, the available tensile strength of one steel headed stud anchor shall be determined as:

> $Q_{nt} = F_u A_{sa}$ (I8-4)

 $\phi_t = 0.75 \,(\text{LRFD}) \qquad \Omega_t = 2.00 \,(\text{ASD})$

where

 Q_{nt} = nominal tensile strength of steel headed stud anchor, kips (N)

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, or where the center-to-center spacing of steel headed stud anchors is less than three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal tensile strength of one steel headed stud anchor shall be determined by one of the following:

- (a) Where anchor reinforcement is developed in accordance with ACI 318 on both sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal tensile strength from Equation 18-4 and the nominal strength of the anchor reinforcement shall be used for the nominal tensile strength, Q_{nt} , of the steel headed stud anchor.
 - (b) As stipulated by the applicable building code or ACI 318 Chapter 17.

User Note: Supplemental confining reinforcement is recommended around the anchors for steel headed stud anchors subjected to tension or interaction of shear and tension to avoid edge effects or effects from closely spaced anchors. See the Commentary and ACI 318 for guidelines.

1407 Strength of Steel Headed Stud Anchors for Interaction of Shear and Ten-3c. 1408 sion in Composite Components 1409

1410 Where concrete breakout strength in shear is not a governing limit state, and where the distance from the center of an anchor to a free edge of concrete in the 1411 1412 direction perpendicular to the height of the steel headed stud anchor is greater 1413 than or equal to 1.5 times the height of the steel headed stud anchor measured 1414 to the top of the stud head, and where the center-to-center spacing of steel 1415 headed stud anchors is greater than or equal to three times the height of the steel 1416 headed stud anchor measured to the top of the stud head, the nominal strength 1417 for interaction of shear and tension of one steel headed stud anchor shall be 1418 determined as:

$$\left(\frac{Q_{rt}}{Q_{ct}}\right)^{5/3} + \left(\frac{Q_{rv}}{Q_{cv}}\right)^{5/3} \le 1.0$$
(18-5)

1422	where	
1423	Q_{ct}	= available tensile strength, determined in accordance with Section
1424		I8.3b, kips (N)
1425	Q_{rt}	= required tensile strength, kips (N)
1426	Q_{cv}	= available shear strength, determined in accordance with Section
1427		I8.3a, kips (N)
1428	Q_{rv}	= required shear strength, kips (N)
1429		

1430		Where concrete breakout strength in shear is a governing limit state, or where
1431		the distance from the center of an anchor to a free edge of concrete in the direc-
1432		tion perpendicular to the height of the steel headed stud anchor is less than 1.5
1433		times the height of the steel headed stud anchor measured to the top of the stud
1434		head, or where the center-to-center spacing of steel headed stud anchors is less
1435		than three times the height of the steel headed stud anchor measured to the top
1436		of the stud head, the nominal strength for interaction of shear and tension of
1437		one steel headed stud anchor shall be determined by one of the following:
1438		
1439		(a) Where anchor reinforcement is developed in accordance with ACI 318 on
1440		both sides of the concrete breakout surface for the steel headed stud anchor,
1441		the minimum of the steel nominal shear strength from Equation I8-3 and
1442		the nominal strength of the anchor reinforcement shall be used for the nom-
1443		inal shear strength, Q_{nv} , of the steel headed stud anchor, and the minimum
1444		of the steel nominal tensile strength from Equation I8-4 and the nominal
1445		strength of the anchor reinforcement shall be used for the nominal tensile
1446		strength, Q_{nt} , of the steel headed stud anchor for use in Equation I8-5.
1447		(b) As stipulated by the applicable building code or ACI 318 Chapter 17.
1448		
1449	3d.	Shear Strength of Steel Channel Anchors in Composite Components
1450		
1451		The available shear strength of steel channel anchors shall be based on the
1452		provisions of Section I8.2b with the following resistance factor and safety fac-
1453		tor:
1455		101.
		$\phi_v = 0.75 (\text{LRFD}) \qquad \Omega_v = 2.00 (\text{ASD})$
1455		$\phi_v = 0.75 (LRFD)$ $\Omega_v = 2.00 (ASD)$
1456	•	
1457	3e.	Detailing Requirements in Composite Components
1458		
1459		Steel anchors in composite components shall meet the following requirements:
1460		
1461		(a) Minimum concrete cover to steel anchors shall be in accordance with ACI
1462		318 provisions for concrete protection of headed shear stud reinforcement.
1463		
1464		(b) Minimum center-to-center spacing of steel headed stud anchors shall be four
1465		diameters in any direction.
1466		
1467		(c) The maximum center-to-center spacing of steel headed stud anchors shall
1468		not exceed 32 times the shank diameter.
1469		
1470		(d) The maximum center-to-center spacing of steel channel anchors shall be 24
1471		in. (600 mm).
1472		
1472		User Note: Detailing requirements provided in this section are absolute limits.
1473		See Sections I8.3a, I8.3b, and I8.3c for additional limitations required to pre-
1475		clude edge and group effect considerations.
1476	4	Destance Destance Desed Alter the for the Destance Color
1477	4.	Performance - Performance - Based Alternative for the Design of Shear Con-
1478		nection
1479		
1480		In lieu of shear connection prescribed by, and the corresponding strength deter-
1481		mined in accordance with, Sections I8.1 and I8.2, it is permitted to use an alter-
1482		nate form of shear connection and determine its strength through testing, pro-
1483		vided its performance requirements are established in accordance with Sections
1484		18.4a through 18.4d and satisfy the approval requirements of the authority

having jurisdiction. The geometric limitations of Sections I3.2c, I8.1, and I8.2 do not apply to the performance evaluated by Section I8.4.

1488 4a. Test Standard

Shear connection strength, slip capacity, and stiffness shall be established in accordance with AISI S923. An alternative test protocol may be used in the evaluation when approved by the authority having jurisdiction.

1494 4b. Nominal and Available Strength

14951496When determining available strength of a flexural member, the nominal tested1497strength of shear connection, Q_{ne} , shall be taken as 0.85 times the mean tested1498strength determined in accordance with Section I8.4a. When required, the de-1499sign shear strength, $\phi_v Q_{ne}$, and the allowable shear strength, $Q_{ne'}\Omega_v$, shall be1500determined in accordance with Section I8.3a. Alternatively, it shall be permit-1501ted to take Q_{ne} as the mean tested strength provided $\phi_v Q_{ne}$ or $Q_{ne'}\Omega_v$, as appli-1502cable, is determined on the basis of a reliability analysis.

User Note: An approach for establishing available strength using test data is provided in Chapter K of AISI S100.

4c. Shear Connection Slip Capacity

The nominal shear connection slip capacity shall be taken as the average shear connection slip corresponding to each specific tested shear connection configuration. Shear connection slip capacity shall be measured at no less than 95% of the post-peak strength.

4d. Acceptance Criteria

The design using tested properties of the shear connection per Section 18.4a through 18.4c shall be limited to the geometric and material properties tested. The nominal performance characteristics are permitted to be used in design provided either conditions (1), (2), and (3) are satisfied, or condition (4) is met.

- (1) The maximum permitted coefficient of variation corresponding to each tested configuration of shear connection does not exceed 0.09 established over four replicate tests, or 0.15 established over nine replicate tests. It is permitted, for this purpose, to establish the number of tests using all tests of the same type of shear connection that exhibit the same failure mode.
- (2) The nominal shear connection slip capacity is at least 0.25 in. (6 mm).
- (3) The minimum shear elastic stiffness of the shear connection shall not be less than 2,000 kip/in. (180 N/mm).
- (4) Shear connections corresponding to the values of coefficient of variation, shear connection slip capacity, and elastic stiffness, other than those stipulated in conditions (1), (2), and (3), shall be deemed acceptable, provided their effect is captured in the design. In lieu of using in an analysis the shear connection elastic stiffness determined per this Section, it shall be permitted to establish the stiffness of a composite section, incorporating shear connection evaluated by this Section, directly through testing in accordance with AISI S924. When stiffness of a composite section is established

1540	in accordance with AISI S924, it shall be a mean tested value established
1541	based on at least three tests.
1542	

PUBLICATION DRAFT

CHAPTER J

1

	DESIGN OF CONNECTIONS
	chapter addresses connecting elements, connectors, and the affected elements of aected members not subject to fatigue loads.
The	chapter is organized as follows:
	 J1. General Provisions J2. Welds and Welded Joints J3. Bolts, Threaded Parts, and Bolted Connections J4. Affected Elements of Members and Connecting Elements J5. Fillers J6. Splices J7. Bearing Strength J8. Column Bases and Bearing on Concrete J9. Anchor Rods and Embedments J10. Flanges and Webs with Concentrated Forces
•	 Note: For cases not included in this chapter, the following sections apply: Chapter K Additional Requirements for HSS and Box-Section Connections Appendix 3 Fatigue
J1.	GENERAL PROVISIONS
1.	Design Basis
	The design strength, ϕR_n , and the allowable strength, R_n/Ω , of connections shall be determined in accordance with the provisions of this chapter and the provisions of Chapter B.
	The required strength of the connections shall be determined by structural anal- ysis for the specified design loads, consistent with the type of construction spec- ified, or shall be a proportion of the required strength of the connected members when so specified herein.
	Where the gravity axes of intersecting axially loaded members do not intersect at one point, the effects of eccentricity shall be considered.
2.	Simple Connections
	Simple connections of beams, girders and trusses shall be designed as flexible and are permitted to be proportioned for the reaction shears only, except as otherwise indicated in the design documents. Flexible beam connections shall accommodate end rotations of simple beams. Some inelastic but self-limiting deformation in the connection is permitted to accommodate the end rotation of a simple beam.
3.	Moment Connections
	End connections of restrained beams, girders and trusses shall be designed for the combined effect of forces resulting from moment and shear induced by the

53 54		rigidity of the connections. Response criteria for moment connections are pro- vided in Section B3.4b.
55		vided in Section D3.40.
56 57		User Note: See Chapter C and Appendix 7 for analysis requirements to establish the required strength for the design of connections.
58 59 4 60	4.	Compression Members with Bearing Joints
61 62		Compression members relying on bearing for load transfer shall meet the fol- lowing requirements:
63 64 65		(a) For columns bearing on bearing plates or finished to bear at splices, there shall be sufficient connectors to hold all parts in place.
66 67 68 69 70		(b) For compression members other than columns finished to bear, the splice material and its connectors shall be arranged to hold all parts in line and their required strength shall be the lesser of:
71 72 73		 An axial tensile force equal to 50% of the required compressive strength of the member; or The moment and shear resulting from a transverse load equal to 2%
74 75 76 77		of the required compressive strength of the member. The transverse load shall be applied at the location of the splice exclusive of other loads that act on the member. The member shall be taken as pinned for the determination of the shears and moments at the splice.
78 79 80		User Note: All compression joints should also be proportioned to resist any tension developed by the load combinations stipulated in Section B2.
81 82 5 83	5.	Splices in Heavy Sections
84 85 86 87 88 89 90 91 92 93		When tensile forces due to applied tension or flexure are to be transmitted through splices in heavy shapes, as defined in Sections A3.1d and A3.1e, by complete-joint-penetration (CJP) groove welds, the following provisions apply: (a) material notch-toughness requirements as given in Sections A3.1d and A3.1e; (b) weld access hole details as given in Section J1.6; (c) filler metal requirements as given in Section J2.6; and (d) thermal cut surface preparation and inspection requirements as given in Section M2.2. The foregoing provision is not applicable to splices of elements of built-up shapes that are welded prior to assembling the shape.
94 95 96 97 98 99		User Note: CJP groove welded splices of heavy sections can exhibit detrimental effects of weld shrinkage. Members that are sized for compression that are also subject to tensile forces may be less susceptible to damage from shrinkage if they are spliced using partial-joint-penetration (PJP) groove welds on the flanges and fillet-welded web plates, or using bolts for some or all of the splice.
100 6	6.	Weld Access Holes
101 102 103		Weld access holes shall meet the following requirements:
104 105 106		(a) All weld access holes required to facilitate welding operations shall be de- tailed to provide room for weld backing as needed.

107 108 109		(b) The access hole shall have a length from the toe of the weld preparation not less than 1-1/2 times the thickness of the material in which the hole is made, nor less than 1-1/2 in. (38 mm).
110 111 112 113		(c) The access hole shall have a height not less than the thickness of the material with the access hole, nor less than 3/4 in. (19 mm), nor does it need to exceed 2 in. (50 mm).
114 115 116 117		(d) For sections that are rolled or welded prior to cutting, the edge of the web shall be sloped or curved from the surface of the flange to the reentrant surface of the access hole.
118 119 120 121 122		(e) In hot-rolled shapes, and built-up shapes with CJP groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
122 123 124		(f) No arc of the weld access hole shall have a radius less than 3/8 in. (10 mm).
124 125 126 127 128		(g) In built-up shapes with fillet or partial-joint-penetration (PJP) groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
129 130 131		(h) The access hole is permitted to terminate perpendicular to the flange, provid- ing the weld is terminated at least a distance equal to the weld size away from the access hole.
132 133 134 135		(i) For heavy shapes, as defined in Sections A3.1d and A3.1e, the thermally cut surfaces of weld access holes shall be ground to bright metal.
136 137 138		(j) If the curved transition portion of weld access holes is formed by predrilled or sawed holes, that portion of the access hole need not be ground.
138 139 140	7.	Placement of Welds and Bolts
141 142 143 144 145		Groups of welds or bolts at the ends of any member that transmit axial force into that member shall be sized so that the center of gravity of the group coin- cides with the center of gravity of the member, unless provision is made for the eccentricity. The foregoing provision is not applicable to end connections of single-angle, double-angle and similar members.
146 147	8.	Bolts in Combination with Welds
148 149 150		Bolts shall not be considered as sharing the load in combination with welds, except in the design of shear connections on a common faying surface where strain compatibility between the bolts and welds is considered.
151 152 153 154 155 156		It is permitted to determine the available strength, ϕR_n and R_n/Ω , as applicable, of a joint combining the strengths of high-strength bolts and longitudinal fillet welds as the sum of (1) the nominal slip resistance, R_n , for bolts as defined in Equation J3-4 according to the requirements of a slip-critical connection and (2) the nominal weld strength, R_n , as defined in Section J2.4, when the following apply:

157 (a) $\phi = 0.75$ (LRFD); $\Omega = 2.00$ (ASD) for the combined joint.

158 159 160		(b) When the high-strength bolts are pretensioned according to the require- ments of Table J3.1 or Table J3.1M, using the turn-of-nut or combined method, the longitudinal fillet welds shall have an available strength of
161		not less than 50% of the required strength of the connection.
162		(c) When the high-strength bolts are pretensioned according to the require-
163		ments of Table J3.1 or Table J3.1M, using any method other than the turn-
164		of-nut method, the longitudinal fillet welds shall have an available
165		strength of not less than 70% of the required strength of the connection.
166		(d) The high-strength bolts shall have an available strength of not less than
167		33% of the required strength of the connection.
168		
169		In joints with combined bolts and longitudinal welds, the strength of the con-
170		nection need not be taken as less than either the strength of the bolts alone or
171		the strength of the welds alone.
172		
173 174	9.	Welded Alterations to Structures with Existing Rivets or Bolts
175		In making welded alterations to structures, existing rivets and high-strength
176		bolts in standard or short-slotted holes transverse to the direction of load, and
177		tightened to the requirements of slip-critical connections are permitted to be
178		utilized for resisting loads present at the time of alteration, and the welding
179		need only provide the additional required strength. The weld available strength
180		shall provide the additional required strength, but not less than 25% of the re-
181		quired strength of the connection.
182		
183		User Note: The provisions of this section are generally recommended for al-
184		teration in building designs or for field corrections. Use of the combined
185		strength of bolts and welds on a common faying surface is not recommended
186		for new design.
187		
188	10.	High-Strength Bolts in Combination with Existing Rivets
189		
190		In connections designed as slip-critical connections in accordance with the pro-
191		visions of Section J3, high-strength bolts are permitted to be considered as shar-
192 193		ing the load with existing rivets.
194	J2.	WELDS AND WELDED JOINTS
195		Walding shall conform to the marrisians of the Standard Walding Code. Steel
196		Welding shall conform to the provisions of the <i>Structural Welding Code—Steel</i> (AWS D1.1/D1.1M), hereafter referred to as AWS D1.1/D1.1M, except where
197 198		
198 199		those provisions differ from this Specification. This Specification governs where provisions differ from AWS D1.1/D1.1M.
200		where provisions differ from A w S D1.1/D1.1W.
200		User Note: Examples of provisions in AWS Welding Code—Steel D1.1/D1.1M
201		that differ from AISC <i>Specification</i> provisions are shown in the Commentary
202		that differ from AISC specification provisions are shown in the commentary
203	1.	Groove Welds
204	1.	
205	1a.	Effective Area
200	14.	
207		The effective area of groove welds shall be taken as the length of the weld times
200		the effective throat.
210		
210		The effective throat of a CJP groove weld shall be the thickness of the thinner
212		part joined.
213		1 J

When filled flush to the surface, the effective weld throat for a PJP groove weld shall be as given in Table J2.1 and the effective weld throat for a flare groove weld shall be as given in Table J2.2. The effective throat of a PJP groove weld or flare groove weld filled less than flush shall be as shown in Table J2.1 or Table J2.2, less the greatest perpendicular dimension measured from a line flush to the base metal surface to the weld surface.

User Note: The effective throat of a PJP groove weld is dependent on the process used and the weld position. The design documents should either indicate
the effective throat required or the weld strength required, and the fabricator
should detail the joint based on the weld process and position to be used to weld
the joint.

For PJP groove welds, effective throats larger than those for prequalified PJP 227 groove welds in AWS D1.1/D1.1M, Figure 5.2, and flare groove welds in Table 228 229 J2.2 are permitted for a given welding procedure specification (WPS), provided 230 the fabricator establishes by testing the consistent production of such larger ef-231 fective throats. Testing shall consist of sectioning the weld normal to its axis, at 232 mid-length, and at terminal ends. Such sectioning shall be made on a number of 233 combinations of material sizes representative of the range to be used in the fabrication. During production of welds with increased effective throats, single 234 235 pass welds and the root pass of multi-pass welds shall be made using a mechanized, automatic, or robotic process, with no decrease in current or increase in 236 237 travel speed from that used for testing. 238

1b. Limitations

239

240 241

242

243

244

245

The minimum effective throat of a partial-joint-penetration groove weld shall not be less than the size required to transmit calculated forces nor the size shown in Table J2.3. Minimum weld size is determined by the thinner of the two parts joined.

Partial-Jo	TABLE J2. Effective Thro pint-Penetration	at of	elds
Welding Process	Welding Position F (flat), H (horizontal), V (vertical), OH (overhead)	Groove Type (AWS D1.1, Figure 5.2	Effective Throat
Shielded metal arc (SMAW) Gas metal arc (GMAW) Flux cored arc (FCAW)	All	J or U groove 60° V	depth of groove
Submerged arc (SAW)	F	J or U groove 60° bevel or V	
Gas metal arc (GMAW) Flux cored arc (FCAW)	F, H	45° bevel	depth of groove
Shielded metal arc (SMAW)	All	45° bevel	depth of groove
Gas metal arc (GMAW) Flux cored arc (FCAW)	V, OH	45 bever	minus 1/8 in. (3 mm)

246 247

248

TABLE J2.2 Effective Throat of Flare Groove Welds Welding Process Flare-Bevel-Groove^[a] Flare-V-Groove GMAW and FCAW-G 5/8R 3/4R SMAW and FCAW-S 5/16R 5/8R SAW 5/16R 1/2R

^[a] For flare-bevel-groove with R < 3/8 in. (10 mm), use only reinforcing fillet weld on filled flush joint.

General note: R = radius of joint surface (is permitted to be assumed equal to 2*t* for HSS)

249 250

Minimum Effe	LE J2.3 ective Throat of ration Groove Welds
Material Thickness of Thinner Part Joined, in. (mm)	Minimum Effective Throat, ^[a] in. (mm)
To 1/4 (6) inclusive	1/8 (3)
Over 1/4 (6) to 1/2 (13)	3/16 (5)
Over 1/2 (13) to 3/4 (19)	1/4 (6)
Over 3/4 (19) to 1-1/2 (38)	5/16 (8)
Over 1-1/2 (38) to 2-1/4 (57)	3/8 (10)
Over 2-1/4 (57) to 6 (150)	1/2 (13)
Over 6 (150)	5/8 (16)
^[a] See Table J2.1.	

251

252 2. Fillet Welds253

254 2a. Effective Area

255 The effective area of a fillet weld shall be the effective length multiplied by the 256 effective throat. The effective throat of a fillet weld shall be the shortest dis-257 tance from the root to the face of the diagrammatic weld. An increase in effec-258 tive throat is permitted if consistent penetration beyond the root of the dia-259 grammatic weld is demonstrated by tests using a given welding procedure 260 specification (WPS), provided the fabricator establishes by testing the con-261 sistent production of such larger effective throat. Testing shall consist of sec-262 tioning the weld normal to its axis, at mid-length, and terminal ends. During production, single pass welds and the root pass of multi-pass welds shall be 263 made using a mechanized, automatic or robotic process, with no decrease in 264 265 current or increase in travel speed from that used for testing. 266

267For fillet welds in holes and slots, the effective length shall be the length of the268centerline of the weld along the center of the plane through the throat. In the269case of overlapping fillets, the effective area shall not exceed the nominal cross-270sectional area of the hole or slot, in the plane of the faying surface.

272 **2b.** Limitations273

271

274

275

279

Fillet welds shall meet the following limitations:

(a) The minimum size of fillet welds shall be not less than the size required to
transmit calculated forces, nor the size as shown in Table J2.4. These limitations do not apply to fillet weld reinforcements of groove welds.

	TABL	E J2.4		
	Minimum Size of Fillet Welds			
	Material Thickness of	Minimum Size of		
	Thinner Part Joined, in. (mm)	Fillet Weld, ^[a] in. (mm)		
	To 1/4 (6) inclusive Over 1/4 (6) to 1/2 (13)	1/8 (3) 3/16 (5)		
	Over 1/2 (13) to 3/4 (19)	1/4 (6)		
	Over 3/4 (19)	5/16 (8)		
	^[a] Leg dimension of fillet welds. When non-	low hydrogen electrodes are used single		
	pass welds must be used.	f f - f - i - 		
20	Note: See Section J2.2b for maximum size			
30 31 32	(b) The maximum specified size of fi	llet welds of connected parts shall be:		
33	(1) Along edges of material les	ss than 1/4 in. (6 mm) thick; not greater		
34	than the thickness of the ma			
85				
86	(2) Along edges of material 1/	4 in. (6 mm) or more in thickness; not		
37		f the material minus 1/16 in. (2 mm), un-		
38		designated on the design and fabrication		
<u>89</u>		o obtain full-throat thickness. In the as-		
90		ce between the edge of the base metal and $\frac{1}{10}$		
91 92	vided the weld size is clearl	tted to be less than 1/16 in. (2 mm), pro-		
93	vided the weld size is clean	y vermable.		
94	(c) The minimum length of fillet welds d	lesigned on the basis of strength shall be not		
95		weld size, or else the effective size of the		
96	weld shall not be taken to exceed			
97				
98		ed fillet welds shall be determined as fol-		
99	lows:			
)0)1	(1) For fillet wolds with a longt	a up to 100 times the weld size, it is nor		
2		h up to 100 times the weld size, it is per- length equal to the actual length.		
3	initied to take the effective i	length equal to the actual length.		
4	(2) When the length of the fille	et weld exceeds 100 times the weld size,		
5		be determined by multiplying the actual		
5	length by the reduction factor			
7		-		
3	$\beta = 1.2$	$-0.002(l/w) \le 1.0$ (J2-1)		
)				
)	where			
1	l = actual length of end-l			
2	w = size of weld leg, in. (mm)		
3	(2) $W_{1} = -4 = 1, -4 = 6, 4 = 1$	d awaaada 200 timoo tha law ing th		
4 5	(3) when the length of the well effective length shall be take	d exceeds 300 times the leg size, w , the		
5 6	enceuve length shan be take.	II as 100W.		
7	User Note: For the effect of long	itudinal fillet weld length in end connec-		
8		e connected member see Section D3.		
9				
)	(e) Intermittent fillet welds are per	mitted to be used to transfer calculated		
		rfaces and to join components of built-up		
22	members. The length of any seg	gment of intermittent fillet welding shall		

323		be not less than four times the weld size, with a minimum of $1-1/2$ in. (38)
324		mm).
325		11111 <i>)</i> .
326		(f) In lap joints, the minimum amount of lap shall be five times the thickness
327		of the thinner part joined, but not less than 1 in. (25 mm). Lap joints join-
328		ing plates or bars subjected to axial stress that utilize transverse fillet
329		welds only shall be fillet welded along the end of both lapped parts, except
330		where the deflection of the lapped parts is sufficiently restrained to pre-
331		vent opening of the joint under maximum loading.
332		1 C J C
333		(g) Fillet weld terminations shall be detailed in a manner that does not result
334		in a notch in the base metal subject to applied tension loads. Components
335		shall not be connected by welds where the weld would prevent the defor-
336		
		mation required to provide assumed design conditions.
337		
338		User Note: Fillet weld terminations should be detailed in a manner that does
339		not result in a notch in the base metal transverse to applied tension loads that
340		can occur as a result of normal fabrication. An accepted practice to avoid
341		notches in base metal is to stop fillet welds short of the edge of the base metal
342		by a length approximately equal to the size of the weld. In most welds, the
343		effect of stopping short can be neglected in strength calculations.
344		
345		There are two common details where welds are terminated short of the end of
346		the joint to permit relative deformation between the connected parts:
347		the joint to permit relative deformation between the connected parts.
347 348		• Walds on the outstanding loss of heavy diverse is a second strain of the second strains of the second strain
		• Welds on the outstanding legs of beam clip-angle connections are returned
349		on the top of the outstanding leg and stopped no more than 4 times the weld
350		size and not greater than half the leg width from the outer toe of the angle.
351		• Fillet welds connecting transverse stiffeners to webs of girders that are ³ / ₄
352		in. thick or less are stopped 4 to 6 times the web thickness from the web toe
353		of the flange-to web fillet weld, except where the end of the stiffener is
354		welded to the flange.
355		C C
356		Details of fillet weld terminations may be shown on shop standard details.
357		
358		(h) Fillet welds in holes or slots are permitted to be used to transmit shear and
359		resist loads perpendicular to the faying surface in lap joints or to prevent
360		the buckling or separation of lapped parts and to join components of built-
361		up members. Such fillet welds are permitted to overlap, subject to the pro-
362		visions of Section J2. Fillet welds in holes or slots are not to be considered
363		plug or slot welds.
364		
365		(i) For fillet welds in slots, the ends of the slot shall be semicircular or shall
366		have the corners rounded to a radius of not less than the thickness of the
367		part containing it, except those ends which extend to the edge of the part.
368		
369	3.	Plug and Slot Welds
370		-
371	3a.	Effective Area
372		
373		The effective shear area of plug and slot welds shall be taken as the nominal
373		area of the hole or slot in the plane of the faying surface.
374		area of the note of slot in the plane of the laying sufface.
	21	Limitations
376	3b.	Limitations
377		

378 379 380		Plug or slot welds are permitted to be used to transmit shear in lap joints, or to prevent buckling or separation of lapped parts, and to join component parts of puilt-up members, subject to the following limitations:
381 382 383 384 385 386		a) The diameter of the holes for a plug weld shall not be less than the thickness of the part containing it plus 5/16 in. (8 mm), rounded to the next larger odd 1/16 in. (even mm), nor greater than the minimum diameter plus 1/8 in. (3 mm) or 2-1/4 times the thickness of the weld.
387 388 389		b) The minimum center-to-center spacing of plug welds shall be four times the diameter of the hole.
390 391 392		c) The length of slot for a slot weld shall not exceed 10 times the thickness of the weld.
393 394 395 396		d) The width of the slot shall be not less than the thickness of the part containing it plus 5/16 in. (8 mm) rounded to the next larger odd 1/16 in. (even mm), nor shall it be larger than 2-1/4 times the thickness of the weld.
397 398 399		e) The ends of the slot shall be semicircular or shall have the corners rounded to a radius of not less than the thickness of the part containing it.
400 401 402		f) The minimum spacing of lines of slot welds in a direction transverse to their length shall be four times the width of the slot.
403 404 405		g) The minimum center-to-center spacing in a longitudinal direction on any line shall be two times the length of the slot.
406 407 408 409 410		n) The thickness of plug or slot welds in material 5/8 in. (16 mm) or less in thickness shall be equal to the thickness of the material. In material over 5/8 in. (16 mm) thick, the thickness of the weld shall be at least one-half the thickness of the material, but not less than 5/8 in. (16 mm).
411 412	4.	Strength
412 413 414 415 416 417 418 419		a) The design strength, ϕR_n , and the allowable strength, R_n/Ω , of welded joints shall be the lower value of the base material strength determined according to the limit states of tensile rupture and shear rupture and the weld metal strength determined according to the limit state of rupture as follows. For the base metal
420 421		$R_n = F_{nBM} A_{BM} \tag{J2-2}$
422 423 424 425		For complete and partial-joint-penetration groove welds, and plug and slot welds
426 427		$R_n = F_{nw} A_{we} \tag{J2-3}$
428 429 430		For fillet welds $R_n = F_{nw} A_{we} k_{ds} \qquad (J2-4)$
431 432 433		where A_{BM} = area of the base metal, in. ² (mm ²)

434 435 436 437	A_{we} = effective area of the weld, in. ² (mm ²) F_{nBM} =nominal stress of the base metal, ksi (MPa)
436	F_{nBM} = nominal stress of the base metal, ksi (MPa)
437	F_{nw} = nominal stress of the weld metal, ksi (MPa)
100	k_{ds} = directional strength increase factor
438	
439	(1) For fillet welds where strain compatibility of the various
440	weld elements is considered
441	
442	$k_{ds} = (1.0 + 0.50 \sin^{1.5}\theta) \tag{J2-5}$
443	
444	(2) For fillet welds to the ends of rectangular HSS loaded in
445	tension
446	
447	$k_{ds} = 1.0$
448	
449	(3) For all other conditions
450	
451	$k_{ds} = 1.0$
452	-4.3
453	θ = angle between the line of action of the required force and the
454	weld longitudinal axis, degrees
455	werd fongitudinal axis, degrees
456	The values of ϕ O F_{even} and F_{even} and limitations thereas are given in
457	The values of ϕ , Ω , F_{nBM} , and F_{nw} , and limitations thereon, are given in Table J2.5.
	1 able J2.5.
458	
459	User Note: The base metal check need not be performed for fillet welds
460	as illustrated in the Commentary.
461	
462	User Note: The instantaneous center method is a valid way to calculate
463	the strength of weld groups consisting of weld elements in various direc-
464	tions that considers strain compatibility of the weld elements.
465	
466	Strain compatibility is satisfied for a linear weld group with a uniform
467	leg size connecting elements with uniform stiffness that are loaded
468	through the center of gravity, and therefore the directional strength in-
469	crease is permitted. A linear weld group is one in which all elements are
470	in a line or are parallel.
471	
472	(b) For fillet weld groups concentrically loaded and consisting of elements
473	with a uniform leg size that are oriented both longitudinally and trans-
174	versely to the direction of applied load, the nominal strength, R_n , of the
475	fillet weld group is permitted to be determined as:
476	
477	$R_n = 0.85 F_{nw} A_{wel} + 1.5 F_{nw} A_{wet} $ (J2-6)
478	
479	where
480	A_{wel} = effective area of longitudinally loaded fillet welds, in. ² (mm ²)
	A_{wet} = effective area of transversely loaded fillet welds, in. ² (mm ²)
481	
481	
481 482	User Note: The nominal strength of fillet welds groups consisting of el-
481 482 483	
481 482 483 484	ements that are oriented both longitudinally and transversely to the di-
481 482 483 484 485 486	

			TABLE J2	5	
A	vailable		th of Welde	-	ksi (MPa)
Load Type and Di- rection Relative to Weld Axis	Pertinent Metal	ϕ and Ω	Nominal Stress (<i>F_{nBM}</i> or <i>F_{nw}</i>), ksi (MPa)	Effective Area (A _{BM} or A _{we}), in. ² (mm ²)	Required Filler Metal Strength Level ^{[a][b]}
	COM	PLETE-JOIN	IT-PENETRATIO	ON GROOVE V	VELDS
Tension– Normal to weld axis			he joint is contro e base metal.	blled	Matching filler metal shall be used. For T- and corner- joints with backing left in place, notch tough filler metal is required. See Section J2.6.
Compression– Normal to weld axis	Strength of the joint is controlled by the base metal.				Filler metal with a strength level equal to or one strength level less than matching filler metal is permitted.
Tension or compression– Parallel to weld axis		ermitted to be	on in parts joine e neglected in de ng the parts.	Filler metal with a strength level equal to or less than matching filler metal is permitted.	
Shear	Strength of the joint is controlled by the base metal.				Matching filler metal shall be used. ^[c]
PARTIAL	-JOINT-PEI		GROOVE WEL RE-BEVEL-GRO		G FLARE-V-GROOVE
Tension-	Base	$\phi = 0.75$ $\Omega = 2.00$	Fu	See J4	-
Normal to weld axis		φ = 0.80 Ω = 1.88	0.60 <i>F</i> EXX	See J2.1a	-
Compression– Connections of Members designed to bear as described in Section J1.4(b)			s permitted to be Ids joining the p		Filler metal with a strength level
Compression-		$\phi = 0.90$ $\Omega = 1.67$	Fy	See J4	equal to or less than matching filler metal is permitted.
Connections not de- signed to bear		$\phi = 0.80$ $\Omega = 1.88$	0.90 F _{EXX}	See J2.1a	
Tension or compression– Parallel to weld axis	weld is pe	ermitted to be	on in parts joine e neglected in de ng the parts.	esign of welds	
Shear	Base	φ = 0.75	Governed by J		-
	Weld	$\Omega = 2.00$		See J2.1a	
FILLEI VVE	Base		Governed by J		ND SKEWED T-JOINTS
Shear	Weld	φ = 0.75 Ω = 2.00	0.60 <i>F</i> EXX ^[d]	See J2.2a	Filler metal with a strength level
Tension or compres- sion– Parallel to weld axis		ermitted to be	on in parts joine e neglected in de ng the parts.		equal to or less than matching filler metal is permitted.
	1	PLU	JG AND SLOT	WELDS	1

She Parallel t		Base		Gover	ned by .	J4			er metal with a strength level
surface on	the effec-	Weld	$\phi = 0.75$ $\Omega = 2.00$		0 <i>F_{EXX}</i>		J2.3a	eq	ual to or-less than matching filler metal is permitted
^[b] Filler me ^[c] Filler me the webs concern. ness of t	tal with a st tals with a s and flange In these ap he material	es of built-up oplications, f	l one streng el less than o sections tr the weld joi ctive throat,	ith level of matching ansferrin nt shall b where ¢	greater th g are per g shear e detaile o = 0.80,	han m rmitte loads ed and	d to beັບ , or in ap the we	used for oplication Id shall b	tted. CJP groove welds between ns where high restraint is a be designed using the thick- $_{\alpha}$ is the nominal strength.
the plow		5011011 JZ.4(6	a) ale also i	applicabl	с.				
5 Caral		XX 7 - 1 - 1 - 1							
5. Comb	ination of	weids							
referen binatio	nce to the a	joint, the st xis of the gr uirements							
				~ ~	\sim		-		
		ler metal fo ective area							
		n in AWS D	1		ne requi	remer	its for fi	latening	
	lievens Brier								
		ollowing Us							
		tching filler tals and p							
		e 5.3 and T		materin	ing mile	i ine	iais, se	e Aws	
	Base	Metal (AST	M)		Matchin				
A3 A5		hick, A588 ^{[a} hick, A588 ^{[a} nd 55, A913			1 70-ksi f E701 proces	5, E			
	13 Gr. 60 a	nd 65			iller meta				
	13 Gr. 70				iller meta				
^[a] F	or corrosion	resistance ar	nd color simila	ar to the ba	ase metal	, see A	WS D1.1	/D1.1M	

^[a] For corrosion resistance and color similar to the base metal, see AWS D1.1/D1.1M clause 5.6.2.

Notes:

In joints with base metals of different strengths, either a filler metal that matches the higher strength base metal or a filler metal that matches the lower strength and produces a low hydrogen deposit may be used when matching strength is required.

Filler metal with a specified minimum Charpy V-notch toughness of 20 ft-lb (27 J) at 40°F (4°C) or lower shall be used in the following joints:

- (a) CJP groove welded T- and corner joints with steel backing left in place, subject to tension normal to the effective area, unless the joints are designed using the nominal strength and resistance factor or safety factor, as applicable, for a PJP groove weld
- (b) CJP groove welded splices subject to tension normal to the effective area in heavy shapes, as defined in Sections A3.1d and A3.1e

20	
21	The manufacturer's Certificate of Conformance shall be sufficient evidence of
22	compliance.
3	N# 1337 11 N# 4 1
7.	Mixed Weld Metal
	When Channes V and the transferrer is an arithmetic data and the analysis of the second secon
	When Charpy V-notch toughness is specified, the process consumables for all
	weld metal, tack welds, root pass and subsequent passes deposited in a joint shall be compatible to ensure notch-tough composite weld metal.
	shan be compatible to ensure notch-tough composite weld metal.
J3.	BOLTS, THREADED PARTS, AND BOLTED CONNECTIONS
00.	bolis, mikember mikis, mid boliter connections
1.	Common Bolts
	ASTM A307 bolts are permitted except where pretensioning is specified.
2.	High-Strength Bolts
	Use of high-strength bolts and bolting components shall conform to the provi-
	sions of the Specification for Structural Joints Using High-Strength Bolts, here-
	after referred to as the RCSC Specification, except where those provisions differ
	from this Specification. This Specification governs where provisions differ
	from the RCSC Specification.
	User Note: Examples of provisions in RCSC Specification for Structural Joints
	Using High-Strength Bolts that differ from AISC Specification provisions are
	shown in the commentary
	High-strength bolts in this Specification are grouped according to material
	strength as follows:
	Group 120 ASTM F3125/F3125M Grades A325, A325M, F1852, and
	ASTM A354 Grade BC
	Group 144 ASTM F3148 Grade 144
	Group 150 ASTM F3125/F3125M Grades A490, A490M, F2280, and
	ASTM A354 Grade BD
	Group 200 ASTM F3043 and F3111
	Use of Group 144 bolting assemblies shall conform to the provisions of ASTM
	F3148.
	Use of Group 200 high-strength bolting assemblies shall conform to the appli-
	cable provisions of their ASTM standard. ASTM F3043 and F3111 Grade 1
	assemblies may be installed only to the snug-tight condition. ASTM F3043
	and F3111 Grade 2 assemblies may be used in snug-tight, pretensioned and
	slip-critical connections, using procedures provided in the applicable ASTM
	standard.
	User Note: The use of Group 200 bolting assemblies is limited to specific
	building locations and noncorrosive environmental conditions by the applica-
	ble ASTM standard.
	When assembled, all joint surfaces, including those adjacent to the washers,
	shall be free of scale, except tight mill scale.
	(a) Bolting assemblies are permitted to be installed to the snug-tight

576		condition when used in:
577 578		(1) Description connections executes stimulated in Section FC
578 579		 Bearing-type connections, except as stipulated in Section E6 Tension or combined shear and tension applications, for Group 120
580		bolts only, where loosening or fatigue due to vibration or load fluc-
581		tuations are not design considerations
582		tuations are not design considerations
583		(b) Bolts in the following connections shall be pretensioned:
584		(b) Boits in the following connections shall be pretensioned.
585		(1) As required by the RCSC <i>Specification</i>
586		(1) The required by the rest of spectrum of the required by the rest of spectrum of the required by the rest of the re
587		consideration
588		(3) End connections of built-up members composed of two shapes either
589		interconnected by bolts, or with at least one open side interconnected
590		by perforated cover plates or lacing with tie plates, as required in
591		Section E6.1
592		
593		(c) The following connections shall be designed as slip-critical:
594		
595		(1) As required by the RCSC <i>Specification</i>
596		(2) The extended portion of bolted, partial-length cover plates, as re-
597		quired in Section F13.3
598		
599 600		The snug-tight condition is defined in the RCSC <i>Specification</i> . Bolts to be tight and to a condition other than any tight shall be clearly identified on the
600 601		tightened to a condition other than snug tight shall be clearly identified on the design documents. (See Table J3.1 or J3.1M for minimum bolt pretension for
602		connections designated as pretensioned or slip critical.)
602		connections designated as pretensioned of sup critical.)
604		User Note: There are no specific minimum or maximum tension requirements
605		for snug-tight bolts. Bolts that have been pretensioned are permitted in snug-
606		tight connections unless specifically prohibited on design documents.
607		
608		When bolt requirements cannot be provided within the RCSC Specification
609		limitations because of requirements for lengths exceeding 12 diameters or di-
610		ameters exceeding 1-1/2 in. (38 mm), bolts or threaded rods conforming to
611		Group 120 or Group 150 materials are permitted to be used in accordance with
612		the provisions for threaded parts in Table J3.2.
613		When ASTM A354 Grade BC, A354 Grade BD, or A449 bolts and threaded
614		rods are used in pretensioned connections, the bolt geometry, including the
615		thread pitch, thread length, head and nut(s), shall be equal to or (if larger in
616		diameter) proportional to that required by the RCSC Specification. Installation
617		shall comply with all applicable requirements of the RCSC Specification with
618		modifications as required for the increased diameter and/or length to provide
619		the design pretension.
620	3.	Size and Use of Holes
621	••	
622		The following requirements apply for bolted connections:
623		
624		(a) The nominal dimensions of standard, oversized, short-slotted and long-slot-
625		ted holes for bolts are given in Table J3.3 or Table J3.3M.
626		
627		User Note: Bolt holes with a smaller nominal diameter are permitted. See
628		RCSC Table 3.1 for bolt hole fabrication tolerances. See Section J9 for diame-
629		ters of holes in base plates for anchor rods providing anchorage to concrete.
630		

- 631 632 633 634 635
- (b) Standard holes or short-slotted holes transverse to the direction of the load shall be provided in accordance with the provisions of this Specification, unless oversized holes, short-slotted holes parallel to the load, or long-slotted holes are approved by the engineer of record.
- 636 637
- (c) Finger shims up to 1/4 in. (6 mm) are permitted in slip-critical connections designed on the basis of standard holes without reducing the nominal shear strength of the fastener to that specified for slotted holes.
- 638 639

	T	ABLE J3.1			
Minimum Bolt Pretension, kips					
Bolt Size, in.	Group 120 ^[a]	Group 144 ^[b] and Group 150 ^[b]	Group 200, Grade 2 ^[c]		
1/2	12	15			
5/8	19	24	_		
3/4	28	35	<pre>// // // // // // // // // // // // //</pre>		
7/8	39	49			
1	51	64	90		
1-1/8	64	80	113		
1-1/4	81	102	143		
1-3/8	97	121			
1-1/2	118	148	$\times 0^{2}$		
Image:					

^[c] Equal to 0.70 times the minimum tensile strength of bolts as specified in ASTM F3043 and F3111 for Grade 2, rounded off to nearest kip,.

640

Bolt Size, mm	Group 120 ^[a]	Group 150 ^[b]
M12	49	72
M16	91	114
M20	142	179
M22	176	221
M24	205	257
M27	267	334
M30	326	408
M36	475 mes the minimum tensile strength of bolts	595
[]] Equal to 0.70 ti	1 bolts, rounded off to nearest kN. mes the minimum tensile strength of bolts	as specified in ASTM F3125/F31
¹ Equal to 0.70 ti or Grade A490M User Note	e: Metric grades manufactured to A re similar to Group 120 (830 MPa)	STM F3125 Grade A325M a

643

loading in slip-critical connections, but the length shall be normal to the direction of the loading in bearing-type connections. (f) Long-slotted holes are permitted in only one of the connected parts of either a slip-critical or bearing-type connection at an individual faying surface. Long-slotted holes are permitted without regard to direction of loading in slip-critical connections, but shall be normal to the direction of loading in bearing-type connections. (g) Washers shall be provided in accordance with the RCSC Specification Section 6, except for Group 200 bolting assemblies, washers shall be provided in accordance with the applicable ASTM standard. User Note: When Group 200 heavy-hex bolting assemblies are used, a single washer is used under the bolt head and a single washer is used under the nut. When Group 200 twist-off bolting assemblies are used, a single washer is used under the nut. Washers are of the type specified in the ASTM standard for the bolting assembly. **Minimum Spacing** 4. The distance between centers of standard, oversized or slotted holes shall not be less than 2-2/3 times the nominal diameter, d, of the fastener. However, the clear distance between bolt holes or slots shall not be less than d. User Note: A distance between centers of standard, oversize or slotted holes of 3*d* is preferred. PUBLIC REFER

651

652

653 654

655

656

657

658 659

660

661

662 663

664 665

666

667

668

669 670

671 672

673 674

675 676

677

678

TABLE J3.2					
Nominal Stress o	Nominal Ten-	I Threaded Parts, ksi (MPa) Nominal Shear Stress in Bearin Type Connections, <i>Fn</i> v, ksi (MPa) ^[c]			
Description of Fasteners	sile Stress, <i>F_{nt}</i> , ksi (MPa) ^{[a][b]}	Threads Not Ex- cluded from Shear Planes – (N) ^[e]	Threads Ex- cluded from Shear Planes – (X)		
A307 bolts	45 (310) ^[c]	27 (190) ^{[c] [d]}	27 (190) ^{[c][d]}		
Group 120 (e.g., A325)	90 (620)	54 (370)	68 (470		
Group 144 (e.g., F3148)	108 (750)	65 (450)	81 (570)		
Group 150 (e.g., A490)	113 (780)	68 (470)	84 (580)		
Group 200 (e.g., F3043)	150 (1000)	90 (620) ^[f]	113 (780) ^[f]		
Threaded parts meeting the requirements of Section A3.4,	0.75 <i>F</i> _u	0.450 F _u	0.563 F _u		
		$ \mathcal{N} $			

^[a] For high-strength bolts subject to tensile fatigue loading, see Appendix 3.

^[b] For nominal tensile strength it is permitted to use the tensile stress area of the threaded rod or bolt multiplied by the specified minimum tensile stress of the rod or bolt material, in lieu of the tabulated values based on a nominal tensile stress area of 0.75 times the gross area. The tensile stress area shall be calculated in accordance with the applicable ASTM standard.

^[c] For end-loaded connections with a fastener pattern length greater than 38 in. (950 mm), F_{nv} shall be reduced to 83.3% of the tabulated values. Fastener pattern length is the maximum distance parallel to the line of force between the centerline of the bolts connecting two parts with one faving surface.

^{d]} For A307 bolts, the tabulated values shall be reduced by 1% for each 1/16 in. (2 mm) over five diameters of length in the grip.

^[e] Threads assumed and permitted in shear planes in all cases.

^[1] The transition area of Group 200 bolts is considered part of the threaded section.

5. Minimum Edge Distance

680 681

682

683 684

685

686

687

688

689 690

691

692

693

695

The distance from the center of a standard hole to an edge of a connected part in any direction shall not be less than either the applicable value from Table J3.4 or Table J3.4M, or as required in Section J3.11. The distance from the center of an oversized or slotted hole to an edge of a connected part shall be not less than that required for a standard hole to an edge of a connected part plus the applicable increment, C_2 , from Table J3.5 or Table J3.5M.

User Note: The edge distances in Tables J3.4 and J3.4M are minimum edge distances based on standard fabrication practices and workmanship tolerances. The appropriate provisions of Sections J3.11 and J4 must be satisfied.

694 6. Maximum Spacing and Edge Distance

696The maximum distance from the center of any bolt hole to the nearest edge of697elements in contact shall be 12 times the thickness of the connected element698under consideration, but shall not exceed 6 in. (150 mm). The longitudinal

- 699 spacing of bolt holes between elements consisting of a plate and a shape, or two 700 plates, in continuous contact shall be as follows: 701 702 (a) For painted members or unpainted members not subject to corrosion, the 703 spacing shall not exceed 24 times the thickness of the thinner part or 12 704 in. (300 mm). 705 706 (b) For unpainted members of weathering steel subject to atmospheric corro-707 sion, the spacing shall not exceed 14 times the thickness of the thinner part or 7 in. (180 mm). 708 709 User Note: The dimensions in (a) and (b) do not apply to elements consisting 710 of two shapes in continuous contact.
- 711 712 713

TABLE J3.3							
	Nominal Hole Dimensions, in.						
	Hole Dimensions						
Bolt	Standard Oversize Short-Slot Long-Slot						
Diameter	(Dia.)	(Dia.)	(Width x Length)	(Width x Length)			
1/2	9/16	5/8	9/16 x 11/16	9/16 x 1-1/4			
5/8	11/16	13/16	11/16 x 7/8	11/16 x 1-9/16			
3/4	13/16	15/16	13/16 x 1	13/16 x 1-7/8			
7/8	15/16	1-1/16	15/16 x 1-1/8	15/16 x 2-3/16			
1	1-1/8	1-1/4	1-1/8 x 1-5/16	1-1/8 x 2-1/2			
≥1-1/8	d + 1/8	d + 5/16	$(d + 1/8) \times (d + 3/8)$	(d + 1/8) x 2.5d			

TABLE J3.3M						
Nominal Hole Dimensions, mm						
Hole Dimensions						
Bolt Diameter	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width × Length)	Long-Slot (Width x Length)		
M12	14	16	14 x 18	14 x 30		
M12 M16	14	20	14 x 18 18 x 22	14 x 30 18 x 40		
M10 M20	22	20	22 x 26	22 x 50		
M22	24	28	24 x 30	24 x 55		
M24	27 ^[a]	30	27 x 32	27 x 60		
M27	30	35	30 x 37	30 x 67		
M30	33	38	33 x 40	33 x 75		
≥M36	d + 3	d + 8	$(d+3) \times (d+10)$	(d + 3) x 2.5d		
^[a] Clearance provi	ded allows the use of	of a 1-in -diamete	er bolt.	• • •		

716

717

718

720

721 722

723 724

725

726

727

728

729 730 731

732 733

734

TABLE J3.4 Minimum Edge Distance^[a] from Center of Standard Hole^[b] to Edge of Connected Part, in. **Bolt Diameter** Minimum Edge Distance 1/23/4 5/8 7/8 3/4 1 7/8 1-1/8 1 1-1/4 1-1/2 1-1/8 1-1/4 1-5/8 Over 1-1/4 1-1/4d ^[a] If necessary, lesser edge distances are permitted provided the applicable provisions from Sections J3.11 and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval from the engineer of record. ^[b] For oversized or slotted holes, see Table J3.5. TABLE J3.4M Minimum Edge Distance^[a] from Center of Standard Hole^[b] to Edge of Connected Part, mm Minimum Edge Distance **Bolt Diameter** 12 18 16 22 20 26 22 28 24 30 27 34 30 38 36 46 Over 36 1.25d ^[a] If necessary, lesser edge distances are permitted provided the applicable provisions from Sections J3.11and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval from the engineer of record. ^[b] For oversized or <u>slotted holes</u>, see Table J3.5M. 7. Tensile and Shear Strength of Bolts and Threaded Parts

The design tensile or shear strength, ϕR_n , and the allowable tensile or shear strength, R_n/Ω , of a snug-tightened or pretensioned high-strength bolt or threaded part shall be determined according to the limit states of tension rupture and shear rupture as:

 $R_n = F_n A_b \tag{J3-1}$

$$\phi = 0.75 \text{ (LRFD)} \qquad \qquad \Omega = 2.00 \text{ (ASD)}$$

where

 A_b = nominal unthreaded body area of bolt or threaded part, in.² (mm²)

735
$$F_n$$
= nominal tensile stress, F_{nt} , or shear stress, F_{nv} , from Table J3.2, ksi
(MPa)737(MPa)738The required tensile strength shall include any tension resulting from prying
action produced by deformation of the connected parts.740User Note: The available strength of a bolt in shear depends on whether the
bolt is sheared through its shank or through the threads / thread runout. Bolts
that are relatively short may be produced as fully threaded, without a shank, and
thus may not be able to be installed in the "threads excluded" condition.746User Note: The force that can be resisted by a snug-tightened or pretensioned
high-strength bolt or threaded part may be limited by the bearing or tearout
strength at the bolt hole per Section J3.11. The effective strength of an individ-
ual fastener may be taken as the lesser of the fastener shear strength per Section
J3.7 or the bearing or tearout strength at the bolt hole per Section J3.11. The
strength of the bolt group is taken as the sum of the effective strengths of the
individual fasteners.7538. Combined Tension and Shear in Bearing-Type Connections755The available tensile strength of a bolt subjected to combined tension and shear
shall be determined according to the limit states of tension and shear rupture
as:754 $R_n = F'_{nt}A_b$ 755 $R_n = F'_{nt}A_b$

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

where

761

762

763

764

765

 $F'_{nt} =$ nominal tensile stress modified to include the effects of shear stress, ksi (MPa)

$$1.3F_{nt} - \frac{F_{nt}}{\Phi F_{nv}} f_{rv} \le F_{nt} \quad \text{(LRFD)} \tag{J3-3a}$$

parts.

the effective strengths of the

(J3-2)

$$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_{rv} \le F_{nt} \quad (ASD)$$
(J3-3b)

766	F_{nt} = nominal tensile stress from Table J3.2, ksi (MPa)
767	F_{nv} = nominal shear stress from Table J3.2, ksi (MPa)
768	f_{rv} = required shear stress using LRFD or ASD load combinations, ksi
769	(MPa)
770	
771	The available shear stress of the fastener shall equal or exceed the required shear
772	stress, f_{rv} .
773	

User Note: Note that when the required stress, f, in either shear or tension, is less than or equal to 30% of the corresponding available stress, the effects of combined stress need not be investigated. Also note that Equations J3-3a and J3-3b can be rewritten so as to find a nominal shear stress, F'_{nv} , as a function of the required tensile stress, f_t .

778 779 780

774

775

776

777

781

TABLE J3.5 Values of Edge Distance Increment C_2 , in.					
	Slotted Holes				
Nominal		Long Axis Perpendicular to Long Axis			
Diameter of	Oversized	Edge Parallel to			
Fastener	Holes	Short Slots Long Slots ^[a] Edge			
≤ 7/8	1/16	1/8			
1	1/8	1/8	3/4 <i>d</i>	0	
≥1 1/8	1/8	3/16]		

^[a] When the length of the slot is less than the maximum allowable (see Table J3.3), *C*₂ is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.

TABLE J3.5M Values of Edge Distance Increment <i>C</i> ₂ , mm						
Nominal		Slotted Holes				
Diameter of	a	Long Axis Pe	Long Axis			
Fastener	Oversized		dge	Parallel to		
	Holes	Short Slots	Long Slots [a]	Edge		
≤ 22	2	3				
24	3	3	0.75d	0		
≥ 27	3	5				
			llowable (see Table .			

9. High-Strength Bolts in Slip-Critical Connections

Slip-critical connections shall be designed to prevent slip and for the limit states of bearing-type connections. When slip-critical bolts pass through fillers, all surfaces subject to slip shall be prepared to achieve design slip resistance.

The single bolt available slip resistance for the limit state of slip shall be determined as follows:

$$R_n = \mu D_u h_f T_b n_s \tag{J3-4}$$

(a) For standard size and short-slotted holes perpendicular to the direction of the load

 $\phi = 1.00 \text{ (LRFD)} \qquad \Omega = 1.50 \text{ (ASD)}$

(b) For oversized and short-slotted holes parallel to the direction of the load

φ = 0.85 (LRFD) Ω = 1.76 (ASD)

(c) For long-slotted holes

 $\phi = 0.70 \text{ (LRFD)} \qquad \Omega = 2.14 \text{ (ASD)}$

where

810 811 812 813 814 815 816		 D_u = 1.13, a multiplier that reflects the ratio of the mean installed bolt pretension to the specified minimum bolt pretension. The use of other values are permitted if approved by the engineer of record. T_b = minimum fastener pretension given in Table J3.1, kips, or Table J3.1M, kN h_f = factor for fillers, determined as follows:
817 818		(1) For one filler between connected parts
819		$h_f = 1.0$
820 821		(2) For two or more fillers between connected parts
822 823		$h_f = 0.85$
823 824		$n_f = 0.85$
825		n_s = number of slip planes required to permit the connection to slip
826 827		μ = mean slip coefficient for Class A or B surfaces, as applicable, and determined as follows, or as established by tests:
828		
829 830		 For Class A surfaces (unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blast-cleaned steel or hot-
831		dipped galvanized steel whether as-galvanized or hand rough-
832 833		ened.)
833 834		$\mu = 0.30$
835		
836		(2) For Class B surfaces (unpainted blast-cleaned steel surfaces or
837		surfaces with Class B coatings on blast-cleaned steel)
838 839		$\mu = 0.50$
840		μ
841	10.	Combined Tension and Shear in Slip-Critical Connections
842 843		When a slip-critical connection is subjected to an applied tension that reduces
844		the net clamping force, the available slip resistance per bolt from Section J3.9
845		shall be multiplied by the factor, k_{sc} , determined as follows:
846		T
847		$k_{sc} = 1 - \frac{T_u}{D_u T_b n_b} \ge 0 (LRFD) \tag{J3-5a}$ $k_{sc} = 1 - \frac{1.5T_a}{D_u T_b n_b} \ge 0 (ASD) \tag{J3-5b}$
848		$k_{sc} = 1 - \frac{1.5I_a}{D_u T_b n_b} \ge 0 (\text{ASD}) \tag{J3-5b}$
849		where
850		T_a = required tension force using ASD load combinations, kips (kN)
851		T_u = required tension force using LRFD load combinations, kips (kN)
852		n_b = number of bolts carrying the applied tension
853 854	11.	Bearing and Tearout Strength at Bolt Holes
855		Dearing and Tearout Strengen at Doit Holes
856		The available strength, ϕR_n and R_n/Ω , at bolt holes shall be determined for
857		the limit states of bearing and tearout, as follows:
858		$\mathbf{b} = 0.75 \text{ (I, DED)} \qquad \mathbf{O} = 2.00 \text{ (A GD)}$
859 860		$\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$
861		The nominal strength of the connected material, R_n , is determined as follows:

862	11a.	Snug-Tightened or Pretensioned High-Strength Bolted Connections
863 864		All plies of the connected elements shall be in firm contact.
865 866 867 868 869		1. The strength of a connected element at a bolt in a connection with standard, oversized and short-slotted holes, independent of the direction of loading, or a long-slotted hole with the slot parallel to the direction of the bearing force shall be the lesser of:
870 871		(a) Bearing
872 873 874		(i) When deformation at the bolt hole at service load is a design consideration
875 876		$R_n = 2.4 dt F_u \tag{J3-6a}$
877 878 879		(ii) When deformation at the bolt hole at service load is not a de- sign consideration
880 881 882		$R_n = 3.0 dt F_u \tag{J3-6b}$
883 884		(b) Tearout
885 886		(i) When deformation at the bolt hole at service load is a design consideration
887 888 880		$R_n = 1.2l_c t F_u \tag{J3-6c}$
889 890 891 892		(ii) When deformation at the bolt hole at service load is not a de- sign consideration
893 894		$R_n = 1.5l_c t F_u \tag{J3-6d}$
895 896 897 898 898		2. The strength of a connected element at a bolt in a connection with long-slotted holes with the slot perpendicular to the direction of force is the lesser of:(a) Bearing
900 901 902		$R_n = 2.0 dt F_u \tag{J3-6e}$
903 904		(b) Tearout
905 906	111	$R_n = 1.0l_c t F_u \tag{J3-6f}$
907 908 909	11b	. Connections Made Using Bolts or Rods that Pass Completely Through an Unstiffened Box Member or HSS
910 911		(1) Bearing shall satisfy Section J7 and Equation J7-1
912 913 914		(2) Tearout(i) For a bolt in a connection with a standard hole or a short-slotted
915 916		hole with the slot perpendicular to the direction of force:

917 918	(a) When deformation at the bolt hole at service load is a design			
918 919	consideration			
920				
921			(2)	
922		(b) When deformation at the bolt hole at service l	oad is not a	
923		design consideration		
924				
925		$R_n = 1.5 l_c t F_u$	(J3-6h)	
926				
927		(ii) For a bolt in a connection with long-slotted holes w	vith the slot	
928		perpendicular to the direction of force:		
929			$(12, \mathbf{C})$	
930		$R_n = 1.0 l_c t F_u$	(J3.6i)	
931				
932		where $E =$ specified minimum tensile strength of the connected r	natorial Irai	
933 934		F_u = specified minimum tensile strength of the connected r (MPa)	naterial, KSI	
934 935		d = nominal fastener diameter, in. (mm)		
936		l_c = clear distance, in the direction of the force, between the	edge of the	
937		hole and the edge of the adjacent hole or edge of the r		
938		(mm)	,	
939		t = thickness of connected material, in. (mm)		
940				
941		Bearing strength and tearout strength shall be checked for both b		
942		and slip-critical connections. The use of oversized holes and shor		
943		slotted holes parallel to the line of force is restricted to slip-critical	connections	
944		per Section J3.3.		
945 946	12.	Special Fasteners		
940 947	14.	Special Fasteners		
948		The nominal strength of special fasteners other than the bolts presen	ted in Table	
949		J3.2 shall be verified by tests.		
950				
951	13.	Wall Strength at Tension Fasteners		
952		(\mathcal{A})		
953		When bolts or other fasteners in tension are attached to an unstiff		
954		HSS wall, the strength of the wall shall be determined by rational	analysis.	
955	T.A			
956 057	J4.	AFFECTED ELEMENTS OF MEMBERS AND CONNECTIN	NG ELE-	
957 958		MENTS		
958 959		This section applies to elements of members at connections and	connecting	
9 <i>59</i> 960		elements, such as plates, gussets, angles, and brackets.	connecting	
961				
962	1.	Strength of Elements in Tension		
963		-		
964		The design strength, ϕR_n , and the allowable strength, R_n/Ω , of a	affected and	
965		connecting elements loaded in tension shall be the lower value of		
966		cording to the limit states of tensile yielding and tensile rupture.		
967				
968		(a) For tensile yielding of connecting elements		
969				
970		$R_n = F_y A_g$	(J4-1)	
971				

972 $\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD) 973 974 (b) For tensile rupture of connecting elements 975 976 $R_n = F_u A_e$ (J4-2) 977 $\phi = 0.75$ (LRFD) $\Omega = 2.00 \text{ (ASD)}$ 978 979 980 where A_e = effective net area as defined in Section D3, in.² (mm²) 981 982 983 User Note: The effects of shear lag or concentrated loads dispersed within 984 the element may cause only a portion of the area to be effective in resisting the 985 load. For shear lag, see Chapter D. 986 987 Strength of Elements in Shear 2. 988 989 The available shear strength of affected and connecting elements in shear shall 990 be the lower value obtained according to the limit states of shear yielding and 991 shear rupture: 992 (a) For shear yielding of the element 993 $R_n = 0.60 F_y A_{gv}$ $\phi = 1.00 \text{ (LRFD)} \qquad \Omega = 1.50 \text{ (ASD)}$ 994 995 (J4-3)996 997 998 999 where A_{gy} = gross area subject to shear, in.² (mm²) 1000 1001 (b) For shear rupture of the element 1002 1003 $R_n = 0.60 F_u A_{nv}$ $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$ 1004 (J4-4)1005 1006 1007 1008 where 1009 A_{nv} = net area subject to shear, in.² (mm²) 1010 1011 3. **Block Shear Strength** 1012 1013 The available strength for the limit state of block shear rupture along a shear 1014 failure path or paths and a perpendicular tension failure path shall be deter-1015 mined as follows: 1016 1017 $R_n = 0.60F_u A_{nv} + U_{bs}F_u A_{nt} \le 0.60F_v A_{gv} + U_{bs}F_u A_{nt}$ 1018 (J4-5) 1019 1020 $\phi = 0.75$ (LRFD) $\Omega = 2.00$ (ASD) 1021 1022 where A_{nt} = net area subject to tension, in.² (mm²) 1023 1024

5 6 7	Where the tension stress is uniform, $U_{bs} = 1$; where the tension stress is nonuniform, $U_{bs} = 0.5$.				
User Note: Typical cases where U_{bs} should be taken equal to 0.5 are illustration in the Commentary					
4.	Strength of Elements in Compression				
	The available strength of connecting elements in compression for the limit states of yielding and buckling shall be determined as follows:				
	(a) When $L_c/r \le 25$				
	$P_n = F_y A_g \tag{J4-6}$				
)	φ = 0.90 (LRFD) $Ω = 1.67$ (ASD)				
	(b) When $L_c/r > 25$, the provisions of Chapter E apply;				
3 4 5 6 7 8	where $L_c = KL$ = effective length, in. (mm) K = effective length factor L = laterally unbraced length of the element, in. (mm)				
)) [2	User Note: The effective length factors used in computing compressive strengths of connecting elements are specific to the end restraint provided and may not necessarily be taken as unity when the direct analysis method is employed.				
3 4 5.	Strength of Elements in Flexure				
5 6 7 8 9	The available flexural strength of affected elements shall be the lower value obtained according to the limit states of flexural yielding, local buckling, flex- ural lateral-torsional buckling, and flexural rupture.				
J5.	FILLERS				
1.	Fillers in Welded Connections				
3 1 5 5 7	Whenever it is necessary to use fillers in joints required to transfer applied force, the fillers and the connecting welds shall conform to the requirements of Section J5.1a or Section J5.1b, as applicable.				
1a.	Thin Fillers				
9 0 1 2 3 4 5 5 6	Fillers less than 1/4 in. (6 mm) thick shall not be used to transfer stress. When the thickness of the fillers is less than 1/4 in. (6 mm), or when the thickness of the filler is 1/4 in. (6 mm) or greater but not sufficient to transfer the applied force between the connected parts, the filler shall be kept flush with the edge of the outside connected part, and the size of the weld shall be increased over the required size by an amount equal to the thickness of the filler.				
7 1b.	Thick Fillers				
;))	When the thickness of the fillers is sufficient to transfer the applied force be- tween the connected parts, the filler shall extend beyond the edges of the				

1081		outside connected base metal. The welds joining the outside connected base		
1082		metal to the filler shall be sufficient to transmit the force to the filler and		
1083		region subjected to the applied force in the filler shall be sufficient to prevent		
1084		overstressing the filler. The welds joining the filler to the inside connected base		
1085		metal shall be sufficient to transmit the applied force.		
1086				
1087	2.	Fillers in Bolted Bearing-Type Connections		
1088				
1089		When a bolt that carries load passes through fillers that are equal to or less than		
1090		1/4 in. (6 mm) thick, the shear strength shall be used without reduction. When		
1090		a bolt that carries load passes through fillers that are greater than 1/4 in. (6 mm)		
1092		thick, one of the following requirements shall apply:		
1093				
1094		(a) The shear strength of the bolts shall be multiplied by the factor		
1095				
1096		1 - 0.4(t - 0.25)		
1090		1 0.4(i - 0.23)		
1098		1 - 0.0154(t - 6) (S.I.)		
1099				
1100		but not less than 0.85, where t is the total thickness of the fillers.		
1101				
1102		(b) The fillers shall be welded or extended beyond the joint and bolted to uni-		
1102		formly distribute the total force in the connected element over the com-		
1104		bined cross section of the connected element and the fillers.		
1105				
1106		(c) The size of the joint shall be increased to accommodate a number of bolts		
1107		that is equivalent to the total number required in (b).		
1108				
1109	.16	SPLICES		
1109	J6.	SPLICES		
1110	J6.			
$\begin{array}{c} 1110\\1111\end{array}$	J6.	Groove-welded splices in beams shall develop the nominal strength of the		
1110 1111 1112	J6.	Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall		
$\begin{array}{c} 1110\\1111\end{array}$	J6.	Groove-welded splices in beams shall develop the nominal strength of the		
1110 1111 1112	J6.	Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall		
1110 1111 1112 1113 1114		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice.		
1110 1111 1112 1113 1114 1115	J6. J7.	Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall		
1110 1111 1112 1113 1114 1115 1116		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH		
1110 1111 1112 1113 1114 1115 1116 1117		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω ,		
1110 1111 1112 1113 1114 1115 1116		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH		
1110 1111 1112 1113 1114 1115 1116 1117		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω ,		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows:		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows:		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (\text{LRFD})$ $\Omega = 2.00 (\text{ASD})$ The nominal bearing strength, R_n , shall be determined as follows:		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (\text{LRFD})$ $\Omega = 2.00 (\text{ASD})$ The nominal bearing strength, R_n , shall be determined as follows:		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (\text{LRFD}) \qquad \Omega = 2.00 (\text{ASD})$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (\text{LRFD}) \qquad \Omega = 2.00 (\text{ASD})$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD) \qquad \Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners		
$\begin{array}{c} 1110\\ 1111\\ 1112\\ 1113\\ 1114\\ 1115\\ 1116\\ 1117\\ 1118\\ 1119\\ 1120\\ 1121\\ 1122\\ 1123\\ 1124\\ 1125\\ 1126\\ 1127\\ 1128\\ 1129\\ 1130\\ 1131\\ \end{array}$		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n / Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD) \qquad \Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners $R_n = 18F_yA_{pb} \qquad (J7-1)$ where		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD) \qquad \Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners $R_n = 1.8F_yA_{pb} \qquad (J7-1)$ where $A_{pb} =$ projected area in bearing, in. ² (mm ²)		
$\begin{array}{c} 1110\\ 1111\\ 1112\\ 1113\\ 1114\\ 1115\\ 1116\\ 1117\\ 1118\\ 1119\\ 1120\\ 1121\\ 1122\\ 1123\\ 1124\\ 1125\\ 1126\\ 1127\\ 1128\\ 1129\\ 1130\\ 1131\\ 1132\\ 1133\\$		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n / Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD) \qquad \Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners $R_n = 18F_yA_{pb} \qquad (J7-1)$ where		
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners $R_n = 1.8F_yA_{pb}$ (J7-1) where A_{pb} = projected area in bearing, in. ² (mm ²) F_y = specified minimum yield stress, ksi (MPa)		
$\begin{array}{c} 1110\\ 1111\\ 1112\\ 1113\\ 1114\\ 1115\\ 1116\\ 1117\\ 1118\\ 1119\\ 1120\\ 1121\\ 1122\\ 1123\\ 1124\\ 1125\\ 1126\\ 1127\\ 1128\\ 1129\\ 1130\\ 1131\\ 1132\\ 1133\\$		Groove-welded splices in beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of beams shall develop the strength required by the forces at the point of the splice. BEARING STRENGTH The design bearing strength, ϕR_n , and the allowable bearing strength, R_n/Ω , of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows: $\phi = 0.75 (LRFD) \qquad \Omega = 2.00 (ASD)$ The nominal bearing strength, R_n , shall be determined as follows: (a) For finished surfaces, pins in reamed, drilled, or bored holes, bolts or rods that pass completely through an unstiffened box or HSS member, and ends of fitted bearing stiffeners $R_n = 1.8F_yA_{pb} \qquad (J7-1)$ where $A_{pb} =$ projected area in bearing, in. ² (mm ²)		

(J7-2M)

(J7-3M)

1136	
1137	(1) When $d \le 25$ in. (630 mm)

$$R_n = \frac{1.2(F_y - 13)l_b d}{20} \tag{J7-2}$$

1141
$$R_n = \frac{1.2(F_y - 90)l_b d}{20}$$

1143 (2) When d > 25 in. (630 mm)

$$R_n = \frac{6.0(F_y - 13)l_b\sqrt{d}}{20}$$
(J7-3)

1147
$$R_n = \frac{30.2 \left(F_y - 90\right) l_b \sqrt{d}}{20}$$

1148 1149

113811391140

1142

1144

1145

1146

1150

1151

1152

1154 1155

1156

1157

1162

1163 1164

1165 1166

1167 1168 1169

11721173

where d = diamete

d = diameter, in. (mm) $l_b = \text{length of bearing, in. (mm)}$

1153 J8. COLUMN BASES AND BEARING ON CONCRETE

Provisions shall be made to transfer the column loads and moments to the footings and foundations.

1158 In the absence of code regulations, the design bearing strength, $\phi_c P_p$, and the 1159 allowable bearing strength, P_p/Ω_c , for the limit state of concrete crushing are 1160 permitted to be taken as follows:

$$\phi_c = 0.65 \text{ (LRFD)} \qquad \Omega_c = 2.31 \text{ (ASD)}$$

The nominal bearing strength, P_p , is determined as follows:

(a) On the full area of a concrete support

$$P_p = 0.85 f_c' A_1$$
 (J8-1)

(b) On less than the full area of a concrete support

$$P_p = 0.85 f_c' A_1 \sqrt{A_2 / A_1} \le 1.7 f_c' A_1 \tag{J8-2}$$

1174 where

1175 A_1 = area of steel concentrically bearing on a concrete support, in.² (mm²)1176 A_2 = maximum area of the portion of the supporting surface that is geo-1177metrically similar to and concentric with the loaded area, in.² (mm²)1178 f'_c = specified compressive strength of concrete, ksi (MPa)1179

1180J9. ANCHOR RODS AND EMBEDMENTS1181

1182Anchor rods shall be designed to provide the required resistance to loads on1183the completed structure at the base of columns including the net tensile com-1184ponents of any bending moment resulting from load combinations stipulated1185in Section B2. The anchor rods shall be designed in accordance with the re-1186quirements for threaded parts in Table J3.2.1187

1188Design of anchor rods for the transfer of forces to the concrete foundation shall1189satisfy the requirements of ACI 318 (ACI 318M) or ACI 349 (ACI 349M).1190

1191User Note: Column bases should be designed considering bearing against con-1192crete elements, including when columns are required to resist a horizontal1193force at the base plate. See AISC Design Guide 1, Base Plate and Anchor Rod1194Design, Second Edition, for column base design information.1195

1196When anchor rods are used to resist horizontal forces, hole size, anchor rod1197setting tolerance, and the horizontal movement of the column shall be consid-1198ered in the design.

Holes and slots larger than oversized holes and slots in Table J3.3 are permitted
in base plates when adequate bearing is provided for the nut by using ASTM
F844 washers or plate washers to bridge the hole.

User Note: The recommended hole sizes and corresponding washer dimensions and nuts are given in the AISC *Steel Construction Manual* and ASTM F1554. ASTM F1554 anchor rods may be furnished in accordance with product specifications with a body diameter less than the nominal diameter. Load effects such as bending and elongation should be calculated based on minimum diameters permitted by the product specification. See ASTM F1554 and the table, "Applicable ASTM Specifications for Various Types of Structural Fasteners," in Part 2 of the AISC *Steel Construction Manual*.

User Note: See ACI 318 (ACI 318M) for embedment design and for shear friction design. See OSHA for special erection requirements for anchor rods.

1216 J10. FLANGES AND WEBS WITH CONCENTRATED FORCES

This section applies to single- and double-concentrated forces applied normal to the flange(s) of wide-flange sections and similar built-up shapes. A single-concentrated force is either tensile or compressive. Double-concentrated forces are one tensile and one compressive and form a couple on the same side of the loaded member.

When the required strength exceeds the available strength as determined for the limit states listed in this section, stiffeners and/or doublers shall be provided and shall be sized for the difference between the required strength and the available strength for the applicable limit state. Stiffeners shall also meet the design requirements in Section J10.8. Doublers shall also meet the design requirement in Section J10.9.

User Note: See Appendix 6, Section 6.3, for requirements for the ends of cantilever members.

1234 Stiffeners are required at unframed ends of beams in accordance with the re-1235 quirements of Section J10.7. 1237 User Note: Design guidance for members other than wide-flange sections and 1238 similar built-up shapes, including HSS members can be found in the Commen-1239 tary. 1240 1241 1. **Flange Local Bending** 1242 1243 This section applies to tensile single-concentrated forces and the tensile component of double-concentrated forces. 1244 1245 The design strength, ϕR_n , and the allowable strength, R_n/Ω , for the limit state 1246 of flange local bending shall be determined as: 1247 1248 $R_n = 6.25 F_{vf} t_f^2$ 1249 (J10-1) 1250 $\phi = 0.90 \text{ (LRFD)} \qquad \Omega = 1.67 \text{ (ASD)}$ 1251 1252 1253 where 1254 F_{vf} = specified minimum yield stress of the flange, ksi (MPa) 1255 t_f = thickness of the loaded flange, in. (mm) 1256 1257 If the length of loading across the member flange is less than $0.15b_f$, where b_f 1258 is the member flange width, Equation J10-1 need not be checked. 1259 1260 When the concentrated force to be resisted is applied at a distance from the member end that is less than $10t_f$, R_n shall be reduced by 50%. 1261 1262 1263 When required, a pair of transverse stiffeners shall be provided. 1264 1265 2. Web Local Yielding 1266 This section applies to single-concentrated forces and both components of dou-1267 ble-concentrated forces. 1268 1269 1270 The available strength for the limit state of web local yielding shall be deter-1271 mined as follows: 1272 $\phi = 1.00$ (LRFD) $\Omega = 1.50 (ASD)$ 1273 1274 1275 The nominal strength, R_n , shall be determined as follows: 1276 1277 (a) When the concentrated force to be resisted is applied at a distance from the 1278 member end that is greater than the full nominal depth of the member, d, 1279 $R_n = F_{vw}t_w(5k+l_h)$ 1280 (J10-2) 1281 1282 (b) When the concentrated force to be resisted is applied at a distance from the 1283 member end that is less than or equal to the full nominal depth of the mem-1284 ber, d, 1285 $R_n = F_{vw} t_w \left(2.5 k + l_b \right)$ 1286 (J10-3) 1287 1288 where 1289 F_{yw} = specified minimum yield stress of the web material, ksi (MPa)

1290		k = distance from outer face of the flange to the web toe of the fillet, in.		
1291		(mm)		
1292		l_b = length of bearing, in. (mm)		
1293		t_w = thickness of web, in. (mm)		
1294				
1295		When required, a pair of transverse stiffeners or a doubler plate shall be pro-		
1296		vided.		
1297				
1298	3.	Web Local Crippling		
1299				
1300		This section applies to compressive single-concentrated forces or the compres-		
1301		sive component of double-concentrated forces.		
1302				
1303		The available strength for the limit state of web local crippling shall be deter-		
1304		mined as follows:		
1305				
1306		$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$		
1307				
1308		The nominal strength, R_n , shall be determined as follows:		
1309				
1310		(a) When the concentrated compressive force to be resisted is applied at a dis-		
1311		tance from the member end that is greater than or equal to $d/2$		
1312				
1512				
1313		$R_{n} = 0.80t_{w}^{2} \left[1 + 3\left(\frac{l_{b}}{d}\right) \left(\frac{t_{w}}{t_{f}}\right)^{1.5} \sqrt{\frac{EF_{yw}t_{f}}{t_{w}}} Q_{f} \right] $ (J10-4)		
1515		$\mathbf{R}_n = 0.00 \mathbf{I}_W \mathbf{I} + \mathbf{S}(d)(t_f) \mathbf{V} \mathbf{t}_W \mathbf{U}_f \mathbf{U} = \mathbf{U}_f \mathbf{U}_$		
1214				
1314 1315		(b) When the concentrated according for the hermited is any list of a dis		
		(b) When the concentrated compressive force to be resisted is applied at a dis- tense form the member and that is been days $d/2$		
1316		tance from the member end that is less than $d/2$		
1317				
1318		(1) For $l_b/d \le 0.2$		
		$\begin{bmatrix} (L_{1})(t_{1})^{1.5} \end{bmatrix} \boxed{FF_{1.5}}$		
1319		$R_n = 0.40t_w^2 \left[1 + 3\left(\frac{l_b}{d}\right) \left(\frac{t_w}{t_f}\right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}} Q_f \qquad (J10-5a)$		
		$(a)(t_f) \forall t_w$		
1320				
1321		(2) For $l_b / d > 0.2$		
1322		$R_{n} = 0.40 t_{w}^{2} \left[1 + \left(\frac{4l_{b}}{d} - 0.2\right) \left(\frac{t_{w}}{t_{f}}\right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_{f}}{t_{w}}} Q_{f} (J10-5b)$		
1022		$\begin{pmatrix} t_n \\ d \end{pmatrix} \begin{pmatrix} t_f \\ t_w \end{pmatrix} = \begin{pmatrix} t_w \\ t_w \end{pmatrix}$		
1222		where		
1323 1324		d = full nominal depth of the member, in. (mm)		
1324		Q_f = chord-stress interaction parameter = 1.0 for wide-flange sections,		
1325		Q_f = chord-stress interaction parameter = 1.0 for wide-marge sections, channels, box sections, and for HSS (connecting surface) in tension		
1320		= as given in Section K1.3 for all other HSS conditions		
1327		us given in Section 121.5 for an other 1155 conditions		
1329		When required, a transverse stiffener, a pair of transverse stiffeners, or a dou-		
1320		bler plate extending at least three quarters of the depth of the web shall be		
1221		newided		

1331 provided. 1332

13334.Web Sidesway Buckling1334

1335This section applies only to compressive single-concentrated forces applied to1336members where relative lateral movement between the loaded compression

fange and the tension flange is not restrained at the point of application of the
concentrated force.
The available strength of the web for the limit state of sidesway buckling shall
determined as follows:

$$\begin{aligned} & \rho = 0.85 (LRFD) = \Omega = 1.76 (ASD) \\ & The nominal strength, Rn shall be determined as follows:
(a) If the compression flange is restrained against rotation
(b) When $(h/t_n)/(L_h/p_f) \le 2.3$
 $R_n = \frac{C_H^2 v_f}{h^2} \left[1 \pm 0.4 \left(\frac{h/t_n}{L_p/p_f} \right)^3 \right] (10-6) \\ & (2) When $(h/t_n)/(L_h/p_f) > 2.3$, the limit state of web sidesway buckling
does not apply.
When the required strength of the web exceeds the available strength, local lat-
eral bracing shall be provided at the tension flange or either a pair of transverse
stiffeners or a doubler plate shall be provided.
(b) If the compression flange is not restrained against rotation
(1) When $(h/t_n)/(L_h/p_f) \le 1.7$
 $R_n = \frac{C_H^2 v_f}{h^2} \left[0.4 \left(\frac{h/t_n}{L_h/p_f} \right)^3 \right] (10-7) \\ & (2) When $(h/t_n)/(L_h/p_f) \le 1.7$
 $R_n = \frac{C_H^2 v_f}{h^2} \left[0.4 \left(\frac{h/t_n}{L_h/p_f} \right)^3 \right] (10-7) \\ & (2) When $(h/t_n)/(L_h/p_f) \ge 1.7$, the limit state of web sidesway buckling
does not apply.
When the required strength of the web exceeds the available strength, local lat-
eral bracing shall be provided at the tension flange or either a pair of transverse
stiffeners or a doubler plate shall be provided.
(c) If the compression flange is not restrained against rotation
(d) When $(h/t_n)/(L_h/p_f) \le 1.7$, the limit state of web sidesway buckling
does not apply.
When the required strength of the web exceeds the available strength, local lat-
eral bracing shall be provided at both flanges at the point of application of the
concentrated forces.
In Equations J10-6 and J10-7, the following definitions apply:
M = required strength of MPa), when $\alpha_M < M_i$ at the location of the
force
 $A_0 = largest laterally unbraced length along either flange at the point of
load, in. (mm)
 $M_1 = reqired flaxtual strength using LRPD or ASD load combinations$$$$$$$

Draft Dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1387

1388

1389

h = clear distance between flanges less the fillet or corner radius for rolled shapes: distance between adjacent lines of fasteners or the clear dis-

- tance between flanges when welds are used for built-up shapes, in. (mm)
- $\alpha_s = 1.0 (LRFD); 1.5 (ASD)$
- 1390 1391

1394

1395

1396

1397

User Note: For determination of adequate restraint, refer to Appendix 6.

Web Compression Buckling 1392 5. 1393

This section applies to a pair of compressive single-concentrated forces or the compressive components in a pair of double-concentrated forces, applied at both flanges of a member at the same location.

1398 The available strength for the limit state of web compression buckling shall be 1399 determined as follows:

$$R_n = \left(\frac{24t_w^3 \sqrt{EF_{yw}}}{h}\right) Q_f \tag{J10-8}$$

1400

```
1401
1402
```

φ = 0.90 (LRFD) Ω = 1.67 (ASD) where

1403 1404

1405

1406 1407

1408 1409

1410

1411

1413

1414

1416 1417

1418

1419 1420

1421 1422

1423

1424 1425

1426 1427

1428

1429 1430

1435

 $Q_f = 1.0$ for wide-flange sections, channels, box sections, and for HSS (connecting surface) in tension.

= as given in Section K1.3 for all other HSS conditions

When the pair of concentrated compressive forces to be resisted is applied at a distance from the member end that is less than d/2, R_n shall be reduced by 50%.

1412 When required, a single transverse stiffener, a pair of transverse stiffeners, or a doubler plate extending the full depth of the web shall be provided.

1415 6. Web Panel Zone Shear

This section applies to double-concentrated forces applied to one or both flanges of a member at the same location.

The available strength of the web panel zone for the limit state of shear yielding shall be determined as follows:

> $\phi = 0.90 (LRFD)$ $\Omega = 1.67$ (ASD)

The nominal strength, R_n , shall be determined as follows:

When the effect of inelastic panel zone deformation on frame stability is (a) not accounted for in the analysis:

(1) For $\alpha P_r \leq 0.4 P_v$

$$R_n = 0.60 F_v d_c t_w \tag{J10-9}$$

(2) For $\alpha P_r > 0.4 P_v$

1436 $R_n = 0.60 F_y d_c t_w \left(1.4 - \frac{\alpha P_r}{P_y} \right)$ (J10-10) 1437

- (b) When the effect of inelastic panel zone deformation on frame stability is accounted for in the analysis:
 1440
- 1441 (1) For $\alpha P_r \le 0.75 P_y$

(2) For $\alpha P_r > 0.75 P_v$

1442
$$R_n = 0.60 F_y d_c t_w \left(1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w} \right)$$
(J10-11)

1443 1444

$$R_{n} = 0.60F_{y}d_{c}t_{w}\left(1 + \frac{3b_{cf}t_{cf}^{2}}{d_{b}d_{c}t_{w}}\right)\left(1.9 - \frac{1.2\alpha P_{r}}{P_{y}}\right)$$
(J10-12)

1446

1445

1440		
1447		In Equations J10-9 through J10-12, the following definitions apply:
1448		
1449		A_g = gross area of member, in. ² (mm ²)
1450		F_y = specified minimum yield stress of the column web, ksi (MPa)
1451		P_r = required axial strength using LRFD or ASD load combinations, kips
1452		(N)
1453		$P_y = F_y A_g$, axial yield strength of the column, kips (N)
1454		b_{cf} = width of column flange, in. (mm)
1455		d_b = depth of beam, in. (mm)
1456		$d_c = \text{depth of column, in. (mm)}$
1457		t_{cf} = thickness of column flange, in. (mm)
1458		t_w = thickness of column web, in. (mm)
1459		$\alpha = 1.0 (LRFD); = 1.6 (ASD)$
1460		
1461		When required, doubler plate(s) or a pair of diagonal stiffeners shall be provided
1462		within the boundaries of the rigid connection whose webs lie in a common
1463		plane.
1464		
1465		See Section J10.9 for doubler plate design requirements.
1466		
1467	7.	Unframed Ends of Beams and Girders
1468		
1469		At unframed ends of beams and girders not otherwise restrained against rota-
1470		tion about their longitudinal axes, a pair of transverse stiffeners, extending the
1471		full depth of the web, shall be provided.
1472		
1473	8.	Additional Stiffener Requirements for Concentrated Forces
1474		
1475		Stiffeners required to resist tensile concentrated forces shall be designed in ac-
1476		cordance with the requirements of Section J4.1 and welded to the loaded flange
1477		and the web. The welds to the flange shall be sized for the difference between
1478		the required strength and available strength. The stiffener to web welds shall
1479		be sized to transfer to the web the algebraic difference in tensile force at the
1480		ends of the stiffener.
1481		
1482		Stiffeners required to resist compressive concentrated forces shall be designed

1482Stiffeners required to resist compressive concentrated forces shall be designed1483in accordance with the requirements in Section J4.4 and shall either bear on or

1484 1485 1486 1487 1488 1489		be welded to the loaded flange and welded to the web. The welds to the flange shall be sized for the difference between the required strength and the applica- ble limit state strength. The weld to the web shall be sized to transfer to the web the algebraic difference in compression force at the ends of the stiffener. For fitted bearing stiffeners, see Section J7.		
1490 1491 1492 1493 1494		Transverse full depth bearing stiffeners for compressive forces applied to a beam flange(s) shall be designed as axially compressed members (columns) in accordance with the requirements of Section E6.2 and Section J4.4. The member properties shall be determined using an effective length of $0.75h$ and a cross section composed of two stiffeners, and a strip of the web having a width of		
1495 1496 1497 1498		$25t_w$ at interior stiffeners and $12t_w$ at the ends of members. The weld connecting full depth bearing stiffeners to the web shall be sized to transmit the difference in compressive force at each of the stiffeners to the web.		
1499 1500 1501		Transverse and diagonal stiffeners shall comply with the following additional requirements:		
1502 1503 1504		(a) The width of each stiffener plus one-half the thickness of the column web shall not be less than one-third of the flange or moment connection plate width delivering the concentrated force.		
1505 1506 1507		(b) The thickness of a stiffener shall not be less than one-half the thickness of the flange or moment connection plate delivering the concentrated load, nor less than the width divided by 16.		
1508 1509 1510		(c) Transverse stiffeners shall extend a minimum of one-half the depth of the member except as required in Sections J10.3, J10.5, and J10.7.		
1511 1512	9.	Additional Doubler Plate Requirements for Concentrated Forces		
1513 1514		Doubler plates required for compression strength shall be designed in accordance with the requirements of Chapter E.		
1515 1516 1517 1518		Doubler plates required for tensile strength shall be designed in accordance with the requirements of Chapter D.		
1519 1520 1521		Doubler plates required for shear strength (see Section J10.6) shall be designed in accordance with the provisions of Chapter G.		
1522 1523		Doubler plates shall comply with the following additional requirements:		
1524 1525		(a) The thickness and extent of the doubler plate shall provide the additional material necessary to equal or exceed the strength requirements.		
1526 1527		(b) The doubler plate shall be welded to develop the proportion of the total force transmitted to the doubler plate.		
1528 1529 1530	10.	Transverse Forces on Plate Elements		
1530 1531 1532 1533 1534		When a force is applied transverse to the plane of a plate element, the nominal strength shall consider the limit states of shear and flexure in accordance with Sections J4.2 and J4.5.		
1535 1536 1537		User Note: The flexural strength can be checked based on yield-line theory and the shear strength can be determined based on a punching shear model. See AISC <i>Steel Construction Manual</i> Part 9 for further discussion.		

CHAPTER K

ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS

5 This chapter addresses additional requirements for connections to HSS members and 6 box sections of uniform wall thickness, where seam welds between box-section ele-7 ments are complete-joint-penetration (CJP) groove welds in the connection region. 8 The requirements of Chapter J also apply. 9

The chapter is organized as follows:

1

2

3 4

10

11 12

13

14

15 16

17

20 21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37

38 39

40 41

42

43 44

45

46

47 48

- K1. General Provisions and Parameters for HSS Connections
 - K2. Concentrated Forces on HSS
 - K3. HSS-to-HSS Truss Connections
 - K4. HSS-to-HSS Moment Connections
- K5. Welds of Plates and Branches to HSS

18 K1. GENERAL PROVISIONS AND PARAMETERS FOR HSS 19 CONNECTIONS

For the purposes of this chapter, the centerlines of branch members and chord members shall lie in a common plane. Rectangular HSS connections are further limited to having all members oriented with walls parallel to the plane.

The tables in this chapter are often accompanied by limits of applicability. Connections complying with the limits of applicability listed can be designed considering the limit states provided for each joint configuration. Connections not complying with the limits of applicability listed are not prohibited and must be designed by rational analysis.

User Note: The connection strengths calculated in Chapter K, including the applicable sections of Chapter J, are based on strength limit states only. See the Commentary if excessive connection deformations may cause serviceability or stability concerns.

User Note: Connection strength is often governed by the size of HSS members, especially the wall thickness of truss chords, and this must be considered in the initial design. To ensure economical and dependable connections can be designed, the connections should be considered in the design of the members. Angles between the chord and the branch(es) of less than 30° can make welding and inspection difficult and should be avoided. The limits of applicability provided reflect limitations on tests conducted to date, measures to eliminate undesirable limit states, and other considerations discussed in the Commentary. See Section J3.11(b) for through-bolt provisions.

This section provides parameters to be used in the design of plate-to-HSS and HSS-to-HSS connections.

49 The design strength, ϕR_n , ϕM_n , and ϕP_n , and the allowable strength, R_n/Ω , 50 M_n/Ω , and P_n/Ω , of connections shall be determined in accordance with the 51 provisions of this chapter and the provisions of Chapter B. 52

53 54	1.	Definitions of Parameters
55		A_g = gross cross-sectional area of member, in. ² (mm ²)
56		B = overall width of rectangular HSS chord member, measured 90° to the
57		plane of the connection, in. (mm)
58		B_b = overall width of rectangular HSS branch member or plate, measured 90°
59		$D_b = 0$ over an which of rectangular first orallen member of plate, measured yo to the plane of the connection, in. (mm)
60		
61		B_e = effective width of rectangular HSS branch member or plate for local yielding of the transverse element, in. (mm)
62		B_{ep} = effective width of rectangular HSS branch member or plate for punching
63		B_{ep} – effective width of rectangular HSS branch memoer of plate for pl
64		
65		D = outside diameter of round HSS chord member, in. (mm)
		D_b = outside diameter of round HSS branch member, in. (mm) F_c = available stress in chord member, ksi (MPa)
66 67		
67 68		$= F_y \text{ for LRFD; } 0.60F_y \text{ for ASD}$
68 60		F_u = specified minimum tensile strength of HSS chord member material, ksi (MPc)
69 70		(MPa) $E_{\rm respectively}$ and minimum tensile strength of USS brough member meterial list
70		F_{ub} = specified minimum tensile strength of HSS branch member material, ksi
71 72		(MPa) $E_{\rm r} = an a size of the stress o$
72 72		F_y = specified minimum yield stress of HSS chord member material, ksi
73 74		(MPa) $E_{\rm respectively}$ and $E_{\rm respectively}$ and $E_{\rm respectively}$ and $E_{\rm respectively}$
74 75		F_{yb} = specified minimum yield stress of HSS branch member or plate material,
75 76		ksi (MPa) H = overall height of rectangular HSS chord member, measured in the plane
76 77		
77 78		of the connection, in. (mm) $U_{\rm rescale}$ available to find the plane
78 70		H_b = overall height of rectangular HSS branch member, measured in the plane
79 80		of the connection, in. (mm)
80 81		Q_f = chord stress interaction parameter
81		l_{end} = distance from the near side of the connecting branch or plate to end of
82		chord, in. (mm)
83		t = design wall thickness of HSS chord member, in. (mm)
84		$t_b = \text{design wall thickness of HSS branch member or thickness of plate, in.}$
85		(mm) $\theta = $ with active the active of branch diameters to should diameter = D/D for
86 87		β = width ratio; the ratio of branch diameter to chord diameter = D_b/D for
87		round HSS; the ratio of overall branch width to chord width = B_b/B_b for
88		rectangular HSS
89		β_{eff} = effective width ratio; the sum of the perimeters of the two branch mem-
90		bers in a K-connection divided by eight times the chord width
91 02		γ = chord slenderness ratio; the ratio of one-half the diameter to the wall
92		thickness = $D/2t$ for round HSS, or the ratio of one-half the width to wall
93		thickness = $B/2t$ for rectangular HSS
94 05		η = load length parameter, applicable only to rectangular HSS; the ratio of
95		the length of contact of the branch with the chord in the plane of the
96		connection to the chord width = l_b/B
97		θ = acute angle between the branch and chord, degrees
98	•	
99	2.	Rectangular HSS
100	•	
101	2a.	Effective Width for Connections to Rectangular HSS
102		
103		For local yielding of transverse elements, the effective width of elements
104		(plates or rectangular HSS branches) perpendicular to the longitudinal axis of
105		a rectangular HSS member that deliver a force component transverse to the
106		face of the member shall be taken as:
107		

108
$$B_e = \left(\frac{10}{B/t}\right) \left(\frac{F_y t}{F_{yb} t_b}\right) B_b \le B_b$$
(K1-1)
109

For shear yielding (punching), the effective width of the face of a rectangular HSS member, adjacent to transverse element (plates or rectangular HSS branches) shall be taken as:

$$B_{ep} = \left(\frac{10}{B/t}\right) B_b \le B_b \tag{K1-2}$$

User Note: Section J4 addresses the strength of affected elements in tension, compression, flexure and shear. The effective widths above are used to establish the effective areas to be used when checking these limit states. The commentary provides further guidance

3. Chord-Stress Interaction Parameter

Where required, the chord member stress function, Q_f , shall be taken as:

(a) For HSS chord member connecting surface in tension, $Q_f = 1$

(b) For round HSS chord member connecting surface in compression

$$Q_f = 1 - 0.3U(1+U) \le 1.0 \tag{K1-3}$$

(c) For rectangular HSS chord member connecting surface in compression

(1) For T-, Y-, cross, and transverse plate connections

$$0.4 \le Q_f = 1.3 - 0.4 \left(\frac{U}{\beta}\right) \le 1.0 \tag{K1-4}$$

(2) For gapped K-connections

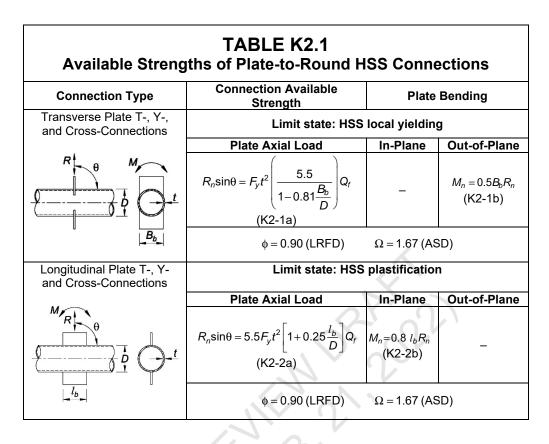
$$0.4 \le Q_f = 1.3 - 0.4 \left(\frac{U}{\beta_{eff}}\right) \le 1.0$$
 (K1-5)

(3) For longitudinal plate connections

$$Q_f = 1 - 0.3U(1+U) \le 1.0 \tag{K1-3}$$

where

$$U = \left| \frac{P_{ro}}{F_c A_g} + \frac{M_{ro}}{F_c S} \right| \le 1.0 \tag{K1-6}$$


where P_{ro} and M_{ro} are determined in the HSS chord member on the side of the joint that has lower compression stress for round HSS and higher compression stress for rectangular HSS. P_{ro} and M_{ro} refer to required strengths in the HSS chord: $P_{ro} = P_u$ for LRFD, and P_a for ASD; $M_{ro} = M_u$ for LRFD, and M_a for ASD.

150 Limits of Applicability:

 $D/t \le 50$ for round HSS T-, Y-, and K-connections

 $D/t \le 40$ for round HSS cross-connections

153		B/t and $H/t \le 35$ for rectangular HSS gapped K-connections and T-, Y-, and		
154		cross-connections		
155		$F_y \le 52 \text{ ksi} (360 \text{ MPa})$		
156		$F_y/F_u \le 0.8$ (Note: ASTM A500 Grade C is acceptable)		
157		,		
158	4.	End Distance		
159				
160		The available strength of the connection in Chapters J and K assume a chord		
161		member with a minimum end distance, l_{end} , on both sides of a connection.		
162) · critty		
163		(a) For rectangular sections		
164		(u) for recurriginal sections		
165		$l_{end} \ge B\sqrt{1-\beta}$, for $\beta \le 0.85$ (K1-7)		
		$l_{end} \ge B\sqrt{1-\beta}$, for $\beta \le 0.85$ (K1-7)		
166				
167		(b) For round sections		
168				
169		$l_{end} \ge D\left(1.25 - \frac{\beta}{2}\right) \tag{K1-8}$		
170				
170		When the connection occurs at a distance less than l_{end} from an unreinforced		
171		end of the chord, the available strength of the connection shall be reduced		
172				
173		by 50%.		
	1/2	CONCENTRATED FOR ON HOS		
175	K2.	CONCENTRATED FORCES ON HSS		
176				
177	1.	Definitions of Parameters		
178				
179		l_b = bearing length of the load, measured parallel to the axis of the HSS		
180		member (or measured across the width of the HSS in the case of loaded		
181		cap plates), in. (mm)		
182				
183	2.	Round HSS		
184				
185		The available strength of plate-to-round HSS connections, within the limits		
186		in Table K2.1A, shall be determined as shown in Table K2.1.		
187				
188				
100		, Or		

190 191

192

193 194 195

196 197

198

201

202

203

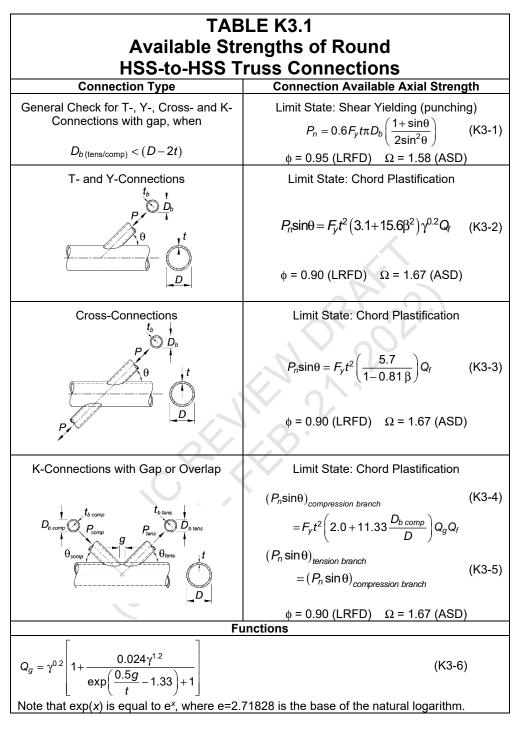
204 205

206

TABLE K2.1A Limits of Applicability of Table K2.1			
HSS wall slenderness:	$D/t \le 50$ for T-connections under branch plate axial load or bending $D/t \le 40$ for cross-connections under branch plate axial load or bending		
Width ratio: Material strength: Ductility:	$0.2 < B_b/D \le 1.0$ for transverse branch plate connections $F_y \le 52$ ksi (360 MPa) $F_y/F_u \le 0.8$ Note: ASTM A500 Gr. C is acceptable		

3. Rectangular HSS

The available strength of connections to rectangular HSS with concentrated loads shall be determined based on the applicable limit states from Chapter J.


199 K3. HSS-TO-HSS TRUSS CONNECTIONS200

HSS-to-HSS truss connections consist of one or more branch members directly welded to a chord that passes as a continuous element through the connection. Such connections shall be classified as follows:

(a) When the punching load, $P_r \sin \theta$, in a branch member is equilibrated by beam shear in the chord member, the connection shall be classified as

207 208 209 210 211 212 213 214		 a T-connection when the branch is perpendicular to the chord, and classified as a Y-connection otherwise. (b) When the punching load, P_r sinθ, in a branch member is essentially equilibrated (within 20%) by loads in other branch member(s) on the same side of the connection, the connection shall be classified as a K-connection. The relevant gap is between the primary branch members whose loads equilibrate.
215 216		User Note: A K-connection with one branch perpendicular to the chord is often called an N-connection.
217		
218 219		(c) When the punching load, $P_r \sin \theta$, is transmitted through the chord member and is equilibrated by branch member(s) on the opposite side, the
220		connection shall be classified as a cross-connection.
221		(d) When a connection has more than two primary branch members, or
222		branch members in more than one plane, the connection shall be clas-
223		sified as a general or multiplanar connection.
224		
225		User Note: Limit states are not defined for general or multiplanar
226 227		HSS-to-HSS truss connections.
227		When branch members transmit part of their load as K-connections and part
228		of their load as T-, Y-, or cross-connections, the adequacy of the connections
230		shall be determined by interpolation on the proportion of the available
230		strength of each in total.
232		stonger of each in tour.
232		For trusses that are made with HSS that are connected by welding branch
234		members to chord members, eccentricities within the limits of applicability
235		are permitted without consideration of the resulting moments for the design
236		of the connection.
237		
238	1.	Definitions of Parameters
239		
240		$O_v = l_{ov}/l_p \times 100, \%$
241		e = eccentricity in a truss connection, positive being away from the
242		branches, in. (mm)
243		g = gap between toes of branch members in a gapped K-connection, ne-
244		glecting the welds, in. (mm)
245		$l_b = H_b / \sin \theta$, in. (mm)
246		l_{ov} = overlap length measured along the connecting face of the chord be-
247		neath the two branches, in. (mm)
248		l_p = projected length of the overlapping branch on the chord, in. (mm)
249		ζ = gap ratio; the ratio of the gap between the branches of a gapped K-
250		connection to the width of the chord = g/B for rectangular HSS
251		P 1996
252	2.	Round HSS
253		
254		The available strength of round HSS-to-HSS truss connections, within the
255		limits in Table K3.1A, shall be taken as the lowest value obtained according
256 257		to the limit states shown in Table K3.1.
257		

K-7

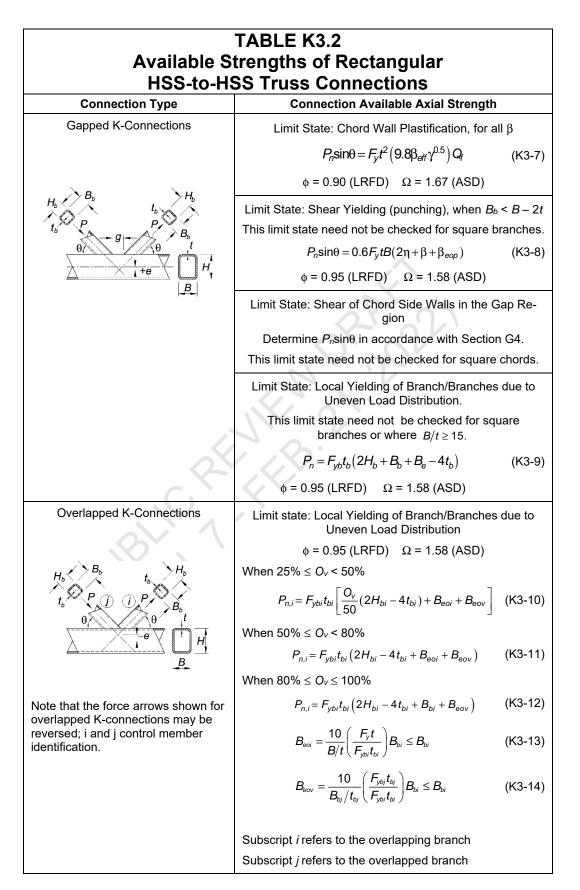
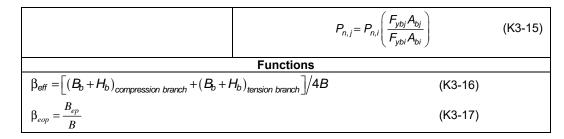

259 260

TABLE K3.1A						
Limits	Limits of Applicability of Table K3.1					
Connection eccentricity:	-0.55	$\leq e/D \leq 0.25$ for K-connections				
Chord wall slenderness:	D/t	\leq 50 for T-, Y- and K-connections				
	D/t	\leq 40 for cross-connections				
Branch wall slenderness:	D_b/t_b	\leq 50 for tension and compression branch				
	D_b/t_b	$\leq 0.05 E/F_{yb}$ for compression branch				
Width ratio:	0.2	$\leq D_b/D \leq 1.0$ for T-, Y-, cross- and overlapped				
		K-connections				
	0.4	$\leq D_b/D \leq 1.0$ for gapped K-connections				
Gap:	g	$\leq t_{b \ comp} + t_{b \ tens}$ for gapped K-connections				
Overlap:	25%	$\leq O_{\nu} \leq 100\%$ for overlapped K-connections				
Branch thickness:	t b overlapping	$\leq t_{b \text{ overlapped}}$ for branches in overlapped				
		K-connections				
Material strength:	F_y and F_{yb}	≤ 52 ksi (360 MPa)				
Ductility strength:	F_y/F_u and F_{yb}/F_u	$_{ab} \leq 0.8$ Note: ASTM A500 Grade C is				
		acceptable.				


3. Rectangular HSS

The available strength, ϕP_n and P_n/Ω , of rectangular HSS-to-HSS truss connections within the limits in Table K3.2A, shall be taken as the lowest value obtained according to limit states shown in Table K3.2 and Chapter J.

User Note: Outside the limits in Table K3.2A, the limit states of Chapter J are still applicable and the applicable limit states of Chapter K are not defined.

K-10

275 276

	TAB	LE K3.2A
Limit	s of Applic	ability of Table K3.2
Connection eccentricity:	-0.55	$\leq e/H \leq 0.25$ for K-connections
Chord wall slenderness:	B/t and H/t	≤ 35 for gapped K-connections and T-, Y-, and cross-connections
	B/t	≤ 30 for overlapped K-connections
	H/t	≤ 35 for overlapped K-connections
Branch wall slenderness:	$B_{\rm b}/t_{\rm b}$ and $H_{\rm b}/t_{\rm b}$	\leq 35 for tension branch
		$\leq 1.25 \sqrt{\frac{E}{F_{yb}}}$ for compression branch of gapped K-,
		T-, Y- and cross-connections
		≤ 35 for compression branch of gapped K-, T-, Y-, and cross-connections
		$\leq 1.1 \sqrt{\frac{E}{F_{yb}}}$ for compression branch of overlapped K-
		connections
Width ratio:	B_{b}/B and H_{b}/B	≥ 0.25 for T-, Y-, cross-, and overlapped K-connec- tions
Aspect ratio:	0.5	$\leq H_b/B_b \leq 2.0$ and $0.5 \leq H/B \leq 2.0$
Overlap:	25%	$\leq O_v \leq 100\%$ for overlapped K-connections
Branch width ratio:	$B_{\scriptscriptstyle bi}/B_{\scriptscriptstyle bj}$	\geq 0.75 for overlapped K-connections, where sub-
		script <i>i</i> refers to the overlapping branch and subscript <i>j</i> refers to the overlapped branch
Branch thickness ratio:	$t_{\scriptscriptstyle bi}/t_{\scriptscriptstyle bj}$	\leq 1.0 for overlapped K-connections, where sub-
		script <i>i</i> refers to the overlapping branch and subscript <i>j</i> refers to the overlapped branch
Material strength:	Fy and Fyb	≤ 52 ksi (360 MPa)
Ductility:	F_y/F_u and F_{yb}/F_u	$_{b} \leq 0.8$ Note: ASTM A500 Gr. C is acceptable.
A	dditional Limits f	or Gapped K-Connections
Width ratio: B_b/d	B and $H_{b}/B \geq 0$.	$1+\frac{\gamma}{50}$
	$\beta_{eff} \ge 0.3$	35
Gap ratio:	$\zeta = g/B \ge 0.5$	$5(1-eta_{eff})$
Gap: Branch size:		compression branch + t_b tension branch 63 (larger B_b), if both branches are square

278 279

User Note: Maximum gap size in Table K3.2A will be controlled by the e/H limit. If the gap is large, treat as two Y-connections.

280 281

282 User Note: The available axial strength for rectangular HSS-to-HSS member con-283 nections, ϕP_n or P_n/Ω , is obtained from Chapter J and the AISC *Steel Construction* 284 *Manual* Part 9. 285

286 K4. HSS-TO-HSS MOMENT CONNECTIONS

HSS-to-HSS moment connections are defined as connections that consist of
one or two branch members that are directly welded to a continuous chord
that passes through the connection, with the branch or branches loaded by
bending moments.

A connection shall be classified as:

- (a) A T-connection when there is one branch and it is perpendicular to the chord and as a Y-connection when there is one branch, but not perpendicular to the chord
- (b) A cross-connection when there is a branch on each (opposite) side of the chord

1. Definitions of Parameters

 Z_b = Plastic section modulus of branch about the axis of bending, in.³ (mm³)

06 2. Round HSS

The available strength of round HSS-to-HSS moment connections within the limits of Table K4.1A shall be taken as the lowest value of the applicable limit states shown in Table K4.1.

Connection Type	Connection Available Flexural Strength
Branch(es) under In-Plane Bending T-, Y- and Cross-Connections	Limit State: Chord Plastification
$M \bigcirc D_b$	$M_{n-i\rho} = 5.39 F_y t^2 \gamma^{0.5} \beta \left(\frac{D_b}{\sin\theta}\right) Q_f (K4-1)$
	φ = 0.90 (LRFD) $Ω = 1.67$ (ASD)
	Limit State: Shear Yielding (punch- ing), when $D_b < (D-2t)$
JBr A.	$M_{n-ip} = 0.6F_y t D_b^2 \left(\frac{1+3\sin\theta}{4\sin^2\theta}\right) \qquad (K4-2)$
	$\phi = 0.95 (LRFD)$ $\Omega = 1.58 (ASD)$
Branch(es) under Out-of-Plane Bending T-, Y- and Cross-Connections	Limit State: Chord Plastification
	$M_{n-op} = \frac{F_y t^2 D_b}{\sin\theta} \left(\frac{3.0}{1 - 0.81\beta}\right) Q_f (K4-3)$
L. Ib	φ = 0.90 (LRFD) $Ω = 1.67$ (ASD)
	Limit state: Shear Yielding (punching), when $D_b < (D-2t)$
	$M_{n-op} = 0.6F_y t D_b^2 \left(\frac{3+\sin\theta}{4\sin^2\theta}\right) \qquad (K4-4)$
	$\phi = 0.95 (LRFD) \Omega = 1.58 (ASD)$

$\frac{P_r}{P_c} + \left(\frac{M_{r-ip}}{M_{c-ip}}\right)^2 + \frac{M_{r-op}}{M_{c-op}} \le 1.0$	(K4-5)
<i>P</i> _r = required axial strength in branch using LRFD or ASD load combinations, kips (N)	
$M_{r,ip}$ = required in-plane flexural strength in branch using LRFD or ASD	
load combinations, kip-in (N-mm)	
M_{r-op} = required out-of-plane flexural strength in branch using LRFD or ASD loa	ad
combinations, kip-in (N-mm)	
P_c = available axial strength obtained from Table K3.1, kips (N)	
<i>M_{c-ip}</i> = available strength for in-plane bending, kip-in (N-mm)	
M_{c-op} = available strength for out-of-plane bending, kip-in (N-mm)	

Limit	TABLE K4.1A s of Applicability of Table K4.1
Chord wall slenderness:	$D/t \le 50$ for T- and Y-connections
	$D/t \le 40$ for cross-connections
Branch wall slenderness:	$D_b/t_b \leq 50$
	$D_b/t_b \leq 0.05 E/F_{yb}$

 F_y and $F_{yb} \le 52$ ksi (360 MPa)

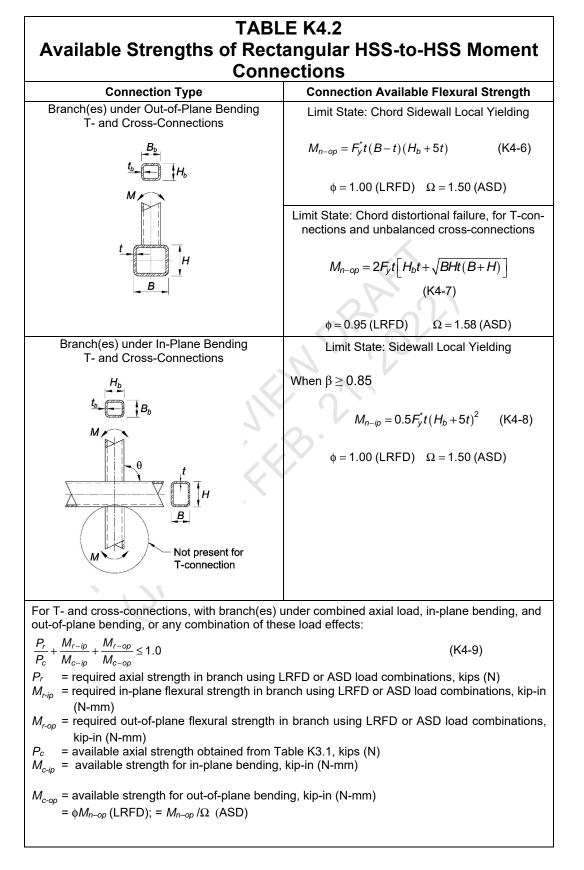
 F_y/F_u and $F_{yb}/F_{ub} \le 0.8$ Note: ASTM A500 Gr. C is

Width ratio: Material strength: Ductility:

Rectangular HSS 3.

The available strength, ϕP_n and P_n/Ω , of rectangular HSS-to-HSS moment connections within the limits in Table K4.2A shall be taken as the lowest value obtained according to limit states shown in Table K4.2 and Chapter J.

 $0.2 < D_b/D \le 1.0$


acceptable

User Note: Outside the limits in Table K4.2A, the limit states of Chapter J are still applicable and the applicable limit states of Chapter K are not defined.

322 323

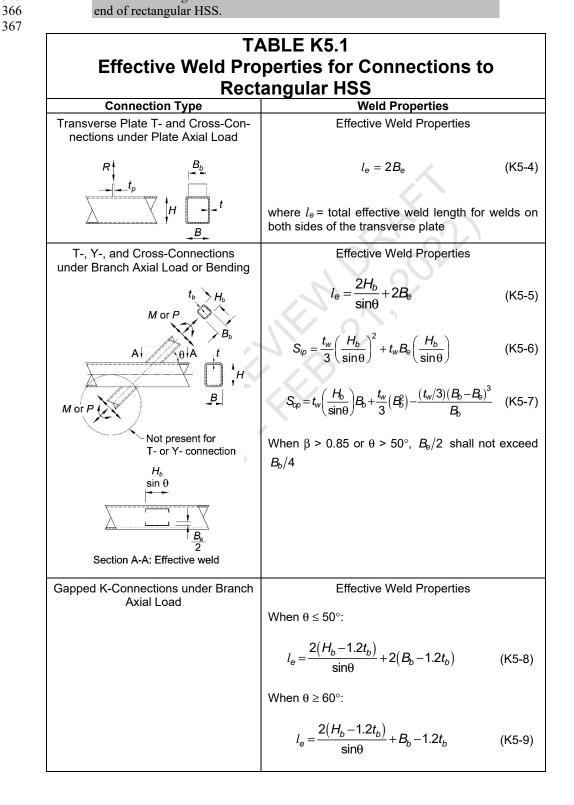
324

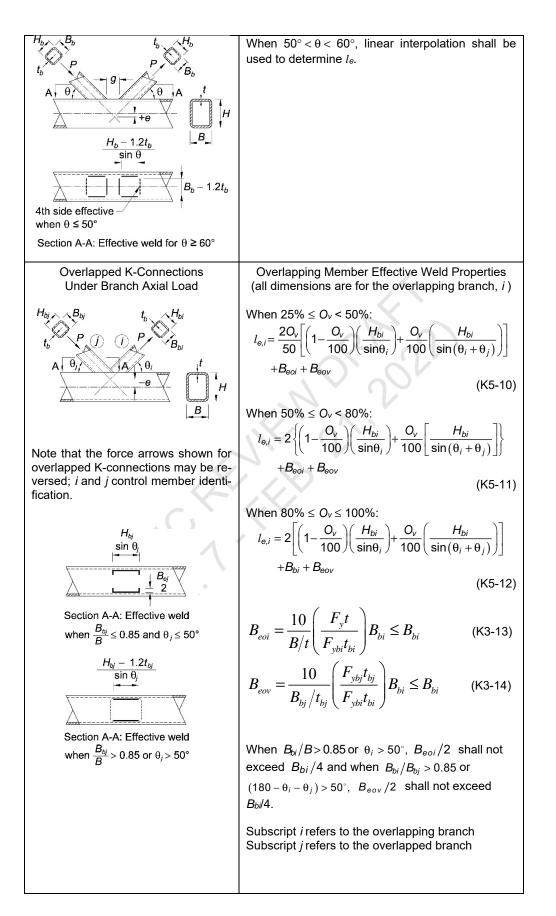
314

F	un	cti	ons

 $F_y = F_y$ for T- connections and $0.8F_y$ for cross connections

 $P_{ro} = P_u$ for LRFD, and P_a for ASD; $M_{ro} = M_u$ for LRFD, and M_a for ASD.




			ABLE K4.2A	
	Lin	nits of Ap	plicability of	Table K4.2
	ich angle:		$\theta \cong 90^{\circ}$	
Chor	rd wall slenderness:	B/t and	$H/t \leq 35$	
Bran	ch wall slenderness	S: B_b/t_b and H	$I_{\rm b}/t_{\rm b}~\leq 35$	
			F	
			$\leq 1.25 \sqrt{\frac{E}{F_{vb}}}$	
Widt	h ratio:	F	B _b /B ≥ 0.25	
	ect ratio:		$B_b \le 2.0 \text{ and } 0.5 \le H$	/B<20
-			$F_{yb} \le 52 \text{ ksi} (360 \text{ N})$	
	erial strength:	•		STM A500 Gr. C is acceptable
Duct	liity.	F_y/F_u and $F_{yb}/$	$F_{ub} \leq 0.0$ Note. As	STM A500 GL C IS acceptable
K5.	WELDS OF PL	ATES AND B	RANCHES TO HS	s OV
X 3.	WELDS OF TE		RAITCHES TO HS	5
	The available str	rength of brancl	h connections shall	be determined consider-
				e of weld, due to differ-
				ISS connections and be-
	tween elements	in transverse pla	ate-to-HSS connecti	ons, as follows:
		R_{ν} of	$r P_n = F_{metola}$	(K5-1)
				(110-1)
		M _{n-ip}	$\mathbf{r} \mathbf{P}_{n} = \mathbf{F}_{nw} \mathbf{t}_{w} l_{e}$ $= \mathbf{F}_{nw} \mathbf{S}_{ip}$ $\mathbf{p} = \mathbf{F}_{nw} \mathbf{S}_{op}$	(K5-2)
		М	-F S	(K5-3)
		1 /1 n-0 <u>p</u>	b = 1 nw S op	(113-5)
	Interaction shall	be considered.		
	(a) E 611-4	14.		
	(a) For fillet we	lds		
	$\phi = 0.75$ (I	LRFD) $\Omega = 2.$	00 (ASD)	
	T - · · · · ·	,		
	(b) For partial-j	oint-penetratior	n groove welds	
	h = 0.90 (I)	LRFD) $\Omega = 1$.	99 (ASD)	
	$\varphi = 0.80 \ (1$	(2 = 1)	88 (ASD)	
	where			
		al stress of we	ld metal in accordar	ce with Chapter J, , ksi
	(MPa)			
			modulus of welds f	or in-plane bending (Ta-
	ble K5	$.1), in.^{3} (mm^{3})$	11 0 11	
				for out-of-plane bending
	(Table	K5.1), in. ³ (mn	n~)	
	l = total at	ffective wold to		fillet welds to HSS for

365

 t_w = smallest effective weld throat around the perimeter of branch or plate, in. (mm)

User Note: Where flexure results in tension in any load case in the weld the directional strength increase factor cannot exceed 1.0 in fillet welds to the

Please asure that the 'divisor line in $H_{bi}/\sin\theta$ appears

Overlapped Member Effective Weld Pro (all dimensions are for the overlapped br	
$l_{e,j} = \frac{2H_{bj}}{\sin\theta_j} + 2B_{ej}$	(K5-13)
$B_{ej} = rac{10}{B/t} igg(rac{F_{y}t}{F_{ybj}t_{bj}}igg) B_{bj} \leq B_{bj}$	(K5-14)
When $B_{bj}/B > 0.85$ or $\theta_j > 50^\circ$,	
When $B_{bj}/B > 0.85$ or $\theta_j > 50^\circ$, $l_{e,j} = 2(H_{bj} - 1.2t_{bj})/\sin\theta_j$	(K5-15)

When a rectangular overlapped K-connection has been designed in accordance with Table K3.2, and the branch member component forces normal to the chord are 80% balanced (in other words, the branch member forces normal to the chord face differ by no more than 20%), the hidden weld under an overlapping branch may be omitted if the remaining welds to the overlapped branch everywhere develop the full capacity of the overlapped branch member walls.

375

379

The weld checks in Tables K5.1 and K5.2 are not required if the welds are capable of developing the full strength of the branch member wall along its entire perimeter (or a plate along its entire length).

380 User Note: The approach used here to allow downsizing of welds assumes a constant 381 weld size around the full perimeter of the HSS branch. Special attention is required 382 for equal width (or near-equal width) connections to rectangular HSS, which combine 383 partial-joint-penetration groove welds along the matched edges of the connection, 384 with fillet welds generally across the chord member face.

385 386

5.2 for Connections to SS
Weld Properties
Effective Weld Properties hen $0.1 \le \beta \le 0.5$, $60^{\circ} \le \theta \le 90^{\circ}$, and $10 \le D/t \le 50$: $l_e = \frac{4}{\sqrt{2\beta(D/t)}} l_w \le l_w$ (K5-15) here l_w is the total weld length bund the branch. This may be ob- hed from 3D models of intersection inders, or from: $l_w = \pi D_b \frac{1+1/\sin\theta}{2}$ (K5-16)
ne Ne

387

1 CHAPTER L 2 3 DESIGN FOR SERVICEABILITY 4 5 6 7 This chapter addresses the evaluation of the structure and its components for the ser-8 viceability limit states of deflections, drift, vibration, wind-induced motion, thermal 9 distortion, and connection slip. 10 The chapter is organized as follows: L1. General Provisions 11 12 L2. Deflections 13 L3. Drift 14 L4. Vibration 15 L5. Wind-Induced Motion L6. Thermal Expansion and Contraction 16 17 L7. Connection Slip 18 19 L1. GENERAL PROVISIONS 20 21 Serviceability is a state in which the function of a building, its appearance, 22 maintainability, durability, and the comfort of its occupants are preserved un-23 der typical usage. Limiting values of structural behavior for serviceability 24 (such as maximum deflections and accelerations) shall be chosen with due re-25 gard to the intended function of the structure. Serviceability shall be evaluated 26 using applicable load combinations. 27 User Note: Serviceability limit states, service loads, and appropriate load 28 29 combinations for serviceability considerations can be found in Minimum De-30 sign Loads and Associated Criteria for Buildings and Other Structures 31 (ASCE/SEI 7) Appendix C and its commentary. The performance require-32 ments for serviceability in this chapter are consistent with ASCE/SEI 7, Ap-33 pendix C. Service loads are those that act on the structure at an arbitrary point 34 in time and are not usually taken as the nominal loads. 35 Reduced stiffness values used in the direct analysis method, described in Chap-36 ter C, are not intended for use with the provisions of this chapter. 37 38 39 L2. DEFLECTIONS 40 41 Deflections in structural members and structural systems shall be limited so as 42 not to impair the serviceability of the structure. 43 44 L3. DRIFT 45 46 Drift shall be limited so as not to impair the serviceability of the structure. 47 L4. VIBRATION 48 49 50 The effect of vibration on the comfort of the occupants and the function of the 51 structure shall be considered. The sources of vibration to be considered in-52 clude occupant loading, vibrating machinery and others identified for the struc-

53 54 ture.

Specification for Structural Steel Buildings, xx, 2022 Draft Dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

L-1

55 L5. WIND-INDUCED MOTION56

57

58

59

61 62

63

64

66 67

68

69

70

The effect of wind-induced motion of buildings on the comfort of occupants shall be considered.

60 L6. THERMAL EXPANSION AND CONTRACTION

The effects of thermal expansion and contraction of a building shall be considered.

65 L7. CONNECTION SLIP

The effects of connection slip shall be included in the design where slip at bolted connections may cause deformations that impair the serviceability of the structure. Where appropriate, the connection shall be designed to preclude slip.

User Note: For the design of slip-critical connections, see Sections J3.8 and J3.9. For more information on connection slip, refer to the RCSC Specification for Structural Joints Using High-Strength Bolts.

CHAPTER M 1 FABRICATION AND ERECTION 2 3 4 5 This chapter addresses requirements for fabrication and erection documents, fabrica-6 7 tion, shop painting, and erection. 8 The chapter is organized as follows: 9 10 M1. Fabrication and Erection Documents 11 M2. Fabrication 12 M3. Shop Painting 13 M4. Erection 14 FABRICATION AND ERECTION DOCUMENTS 15 M1. 16 17 1. **Fabrication Documents for Steel Construction** 18 Fabrication documents shall indicate the work to be performed and shall in-19 clude items required by the applicable building code and the following as 20 applicable: 21 (a) Locations of pretensioned bolts 22 (b) Locations of Class A, or higher, faying surfaces 23 (c) Weld access hole dimensions, surface profile, and finish requirements 24 (d) Nondestructive testing (NDT) where performed by the fabricator 25 2. **Erection Documents for Steel Construction** 26 Erection documents shall indicate the work to be performed, and include 27 items required by the applicable building code and the following as applica-28 ble: (a) Locations of pretensioned bolts 29 30 (b) Those joints or groups of joints in which a specific assembly order, 31 welding sequence, welding technique, or other special precautions are 32 required 33 34 User Note: Code of Standard Practice, Section 4, addresses requirements for 35 fabrication and erection documents. 36 37 **M2. FABRICATION** 38 39 Cambering, Curving and Straightening 1. 40 41 Local application of heat or mechanical means is permitted to be used to intro-42 duce or correct camber, curvature and straightness. For hot rolled structural 43

Local application of heat or mechanical means is permitted to be used to introduce or correct camber, curvature and straightness. For hot rolled structural shapes, hollow structural sections (HSS), plates, and bars conforming to the standard designations listed in Section A3.1a, the temperature of heated regions shall not exceed 1,200°F (650°C), except that for ASTM A514/A514M the temperature of heated regions shall not exceed 1,100°F (590°C) and for ASTM

> Specification for Structural Steel Buildings, xx, 2022 Draft Dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

M-1

User Note: For other materials, as identified in Section A3.1b, limitations for the temperature of the heated regions should be consistent with the recommendations of the producer of the material.

2. Thermal Cutting

47

48

49

50

51

52 53

54

55

56 57

58 59

60

61

62

63

64

65

66 67

68

69

70

71

72 73

74

75

76

77

78

79

Thermally cut edges shall meet the requirements of *Structural Welding Code*— *Steel* (AWS D1.1/D1.1M) clauses 7.14.5.2, 7.14.8.3, and 7.14.8.4, hereafter referred to as AWS D1.1M/D1.1M, with the exception that thermally cut free edges that will not be subject to fatigue shall be free of round-bottom gouges greater than 3/16 in. (5 mm) deep, and sharp V-shaped notches. Gouges deeper than 3/16 in. (5 mm) and notches shall be removed by grinding or repaired by welding.

Reentrant corners shall be formed with a curved transition. The radius need not exceed that required to fit the connection. Discontinuous corners are permitted where the material on both sides of the discontinuous reentrant corner are connected to a mating piece to prevent deformation, and associated stress concentration at the corner.

User Note: Reentrant corners with a radius of 1/2 to 3/8 in. (13 to 10 mm) are generally acceptable for statically loaded work. Where pieces need to fit tightly together, a discontinuous reentrant corner is acceptable if the pieces are connected close to the corner on both sides of the discontinuous corner. Slots in HSS for gussets may be made with semicircular ends or with curved corners. Square ends are acceptable provided the edge of the gusset is welded to the HSS.

80 Weld access holes shall meet the geometrical requirements of Section J1.6. 81 Beam copes and weld access holes in shapes that are to be galvanized shall be 82 ground to bright metal. For shapes with a flange thickness not exceeding 2 in. 83 (50 mm), the roughness of thermally cut surfaces of copes shall be no greater 84 than a surface roughness value of 2,000 µin. (50 µm) as defined in Surface 85 Texture, Surface Roughness, Waviness, and Lay (ASME B46.1), hereafter re-86 ferred to as ASME B46.1. For beam copes and weld access holes in which the 87 curved part of the access hole is thermally cut in ASTM A6/A6M hot-rolled 88 shapes with a flange thickness exceeding 2 in. (50 mm) and welded built-up 89 shapes with material thickness greater than 2 in. (50 mm), a preheat temperature 90 of not less than 150°F (66°C) shall be applied prior to thermal cutting. The 91 thermally cut surface of access holes in ASTM A6/A6M hot-rolled shapes with 92 a flange thickness exceeding 2 in. (50 mm) and built-up shapes with a material 93 thickness greater than 2 in. (50 mm) shall be ground. 94

User Note: The AWS *Surface Roughness Guide for Oxygen Cutting* (AWS C4.1-77) sample 2 may be used as a guide for evaluating the surface roughness of copes in shapes with flanges not exceeding 2 in. (50 mm) thick.

99 3. Planing of Edges

100

95

96

97

98

101 Planing or finishing of sheared or thermally cut edges of plates or shapes is not 102 required unless specifically called for in the construction documents or in-103 cluded in a stipulated edge preparation for welding. 104 105 4. Welded Construction 106 107 Welding shall be performed in accordance with AWS D1.1/D1.1M, except as 108 modified in Section J2. 109 110 User Note: Welder qualification tests on plate defined in AWS D1.1/D1.1M, clause 10, are appropriate for welds connecting plates, shapes or HSS to other 111 plates, shapes, or rectangular HSS. The 6GR tubular welder qualification is re-112 quired for unbacked complete-joint-penetration groove welds of HSS T-, Y- and 113 K-connections. 114 115 116 5. **Bolted Construction** 117 118 Parts of bolted members shall be pinned or bolted and rigidly held together 119 during assembly. Use of a drift pin in bolt holes during assembly shall not dis-120 tort the metal or enlarge the holes. Poor matching of holes shall be cause for 121 rejection. 122 123 Bolt holes shall comply with the provisions of the RCSC Specification for Structural Joints Using High-Strength Bolts Section 3.3, hereafter referred to 124 125 as the RCSC Specification. Water jet and thermally cut bolt holes are permitted 126 and shall have a surface roughness profile not exceeding 1,000 µin. (25 µm), 127 as defined in ASME B46.1. Gouges shall not exceed a depth of 1/16 in. (2 mm). 128 129 User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS 130 C4.1-77) sample 3 may be used as a guide for evaluating the surface roughness 131 of thermally cut holes. 132 Fully inserted finger shims, with a total thickness of not more than 1/4 in. (6 133 mm) within a joint, are permitted without changing the strength (based upon 134 bolt hole type) for the design of connections. The orientation of such shims is 135 independent of the direction of application of the load. 136 137 The use of high-strength bolts shall conform to the requirements of the RCSC 138 139 Specification, except as modified in Section J3. 140 141 **Compression Joints** 6. 142 143 Compression joints that depend on contact bearing as part of the splice strength 144 shall have the bearing surfaces of individual fabricated pieces prepared by mill-145 ing, sawing, or other equivalent means. 146 147 7. **Dimensional Tolerances** 148 149 Dimensional tolerances shall be in accordance with Chapter 6 of the AISC 150 Code of Standard Practice for Steel Buildings and Bridges, hereafter referred 151 to as the Code of Standard Practice. 152 153 8. **Finish of Column Bases** 154 155 Column bases and base plates shall be finished in accordance with the follow-156 ing requirements:

157		
158		(a) Steel bearing plates 2 in. (50 mm) or less in thickness are permitted with-
159		out milling provided a smooth and notch-free contact bearing surface is
160		obtained. Steel bearing plates over 2 in. (50 mm) but not over 4 in. (100
161		mm) in thickness are permitted to be straightened by pressing or, if presses
162		are not available, by milling for bearing surfaces, except as stipulated in
162		subparagraphs (b) and (c) of this section, to obtain a smooth and notch-free
164		contact bearing surface. Steel bearing plates over 4 in. (100 mm) in thick-
165		ness shall be milled for bearing surfaces, except as stipulated in subpara-
166		graphs (b) and (c) of this section.
167		
168		(b) Bottom surfaces of bearing plates and column bases that are grouted to en-
169		sure full bearing contact on foundations need not be milled.
170		
171		(c) Top surfaces of bearing plates need not be milled when complete-joint-
172		penetration groove welds are provided between the column and the bear-
173		ing plate.
174		
175	9.	Holes for Anchor Rods
176		
177		Holes for anchor rods are permitted to be mechanically or manually thermally
178		cut, providing the quality requirements in accordance with the provisions of
179		Section M2.2 are met.
180		Section W12.2 are met.
	10.	Drain Holes
181	10.	Drain noies
182		
183		When water can collect inside HSS or box members, either during construction
		or during service the member shall be sealed provided with a drain hole at the
184		or during service, the member shall be sealed, provided with a drain hole at the
185		base, or otherwise protected from water infiltration.
185 186		base, or otherwise protected from water infiltration.
185 186 187	11.	
185 186 187 188	11.	base, or otherwise protected from water infiltration. Requirements for Galvanized Members
185 186 187 188 189	11.	base, or otherwise protected from water infiltration.Requirements for Galvanized MembersMembers and parts to be galvanized shall be designed, detailed, and fabricated
185 186 187 188 189 190	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent
185 186 187 188 189	11.	base, or otherwise protected from water infiltration.Requirements for Galvanized MembersMembers and parts to be galvanized shall be designed, detailed, and fabricated
185 186 187 188 189 190	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent
185 186 187 188 189 190 191	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent
185 186 187 188 189 190 191 192	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication docu-
185 186 187 188 189 190 191 192 193	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of</i>
185 186 187 188 189 190 191 192 193 194 195	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123,
185 186 187 188 189 190 191 192 193 194 195 196	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and
185 186 187 188 189 190 191 192 193 194 195 196 197	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes
185 186 187 188 189 190 191 192 193 194 195 196 197 198	11.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199		 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized.
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 		 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199		 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized.
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 		 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202	M3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203	M3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	M3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements Shop painting and surface preparation shall be in accordance with the provi-
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 	М3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 	М3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements Shop painting and surface preparation shall be in accordance with the provisions in <i>Code of Standard Practice</i> Chapter 6.
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 	М3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements Shop painting and surface preparation shall be in accordance with the provi-
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 	M3. 1.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements Shop painting and surface preparation shall be in accordance with the provisions in <i>Code of Standard Practice</i> Chapter 6. Shop paint is not required unless specified by the contract documents.
 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 	М3.	 base, or otherwise protected from water infiltration. Requirements for Galvanized Members Members and parts to be galvanized shall be designed, detailed, and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts. User Note: Drainage and vent holes should be detailed on fabrication documents. See the American Galvanizer's Association (AGA) <i>The Design of Products to be Hot-Dip Galvanized After Fabrication</i>, and ASTM A123, A143, A385, F2329, A385, and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized. SHOP PAINTING General Requirements Shop painting and surface preparation shall be in accordance with the provisions in <i>Code of Standard Practice</i> Chapter 6.

Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned and painted prior to assembly, if required by the construction documents.

215 **3.** Contact Surfaces

214

216 217

218

219

220

222 223

224

225

226

228 229

230

231

232

233

235 236

237 238

239

240

242 243

244

245 246

247

248

249

250

251

253 254

255 256

258

Paint is permitted in bearing-type connections. For slip-critical connections, the faying surface requirements shall be in accordance with RCSC *Specification* Section 3.2.2.

221 4. Finished Surfaces

Machine-finished surfaces shall be protected against corrosion by a rust inhibitive coating that can be removed prior to erection or has characteristics that make removal prior to erection unnecessary.

227 5. Surfaces Adjacent to Field Welds

Unless otherwise specified in the design documents, surfaces within 2 in. (50 mm) of any field weld location shall be free of materials that would prevent weld quality from meeting the quality requirements of this Specification, or produce unsafe fumes during welding.

234 M4. ERECTION

1. Column Base Setting

Column bases shall be set level and to correct elevation with full bearing on concrete or masonry as defined in *Code of Standard Practice* Section 7.

241 2. Stability and Connections

The frame of structural steel buildings shall be carried up true and plumb within the limits defined in *Code of Standard Practice* Chapter 7. As erection progresses, the structure shall be secured to support dead, erection, and other loads anticipated to occur during the period of erection. Temporary bracing shall be provided, in accordance with the requirements of the *Code of Standard Practice*, wherever necessary to support the loads to which the structure may be subjected, including equipment and the operation of same. Such bracing shall be left in place as long as required for safety.

252 **3.** Alignment

No permanent bolting or welding shall be performed until the affected portions of the structure have been aligned as required by the construction documents.

257 4. Fit of Column Compression Joints and Base Plates

Lack of contact bearing not exceeding a gap of 1/16 in. (2 mm), regardless of the type of splice used (partial-joint-penetration groove welded or bolted), is permitted. If the gap exceeds 1/16 in. (2 mm), but is equal to or less than 1/4 in. (6 mm), and if an engineering investigation shows that sufficient contact area does not exist, the gap shall be packed out with nontapered steel shims. Shims need not be other than mild steel, regardless of the grade of the main material.

267 5. Field Welding

268 269

270

271

272

273

Surfaces in and adjacent to joints to be field welded shall be prepared as necessary to assure weld quality. This preparation shall include surface preparation necessary to correct for damage or contamination occurring subsequent to fabrication.

274 6. Field Painting275

Responsibility for touch-up painting, cleaning, and field painting shall be allocated in accordance with accepted local practices, and this allocation shall be
set forth explicitly in the contract documents.

PUBLICA. HER. 21. 2022

	CHAPTER N QUALITY CONTROL AND QUALITY ASSURANCE
and no	hapter addresses minimum requirements for quality control, quality assurance ondestructive testing for structural steel systems and steel elements of composit pers for buildings and other structures.
follow (a) S (b) T	Note: This chapter does not address quality control or quality assurance for the ving items: teel (open web) joists and girders anks or pressure vessels
(d) C	ables, cold-formed steel products, or gage material oncrete reinforcing bars, concrete materials, or placement of concrete for omposite members
The C	hapter is organized as follows:
	 N1. General Provisions N2. Fabricator and Erector Quality Control Program N3. Fabricator and Erector Documents N4. Inspection and Nondestructive Testing Personnel N5. Minimum Requirements for Inspection of Structural Steel Buildings N6. Approved Fabricators and Erectors N7. Nonconforming Material and Workmanship
N1.	N8. Minimum Requirements for Shop or Field Applied Coatings GENERAL PROVISIONS
	Quality control (QC), as specified in this chapter, shall be provided by the fabricator and erector. Quality assurance (QA), as specified in this chapter shall be provided by others when required by the authority having jurisdic tion (AHJ), applicable building code, purchaser, owner, or engineer of rec ord (EOR), and when required, responsibilities shall be specified in the cor- tract documents Nondestructive testing (NDT) shall be performed by the agency or firm responsible for quality assurance, except as permitted in ac- cordance with Section N6.
	User Note: The QA/QC requirements in Chapter N are considered adequate and effective for most steel structures and are strongly encouraged without modification. When the applicable building code and AHJ requires the us of a QA plan, this chapter outlines the minimum requirements deemed ef- fective to provide satisfactory results in steel building construction. There may be cases where supplemental inspections are advisable. Additionally where the contractor's QC program has demonstrated the capability to per- form some tasks this plan has assigned to QA, modification of the plan coul- be considered.
	User Note: The producers of materials manufactured in accordance with the standard specifications referenced in Section A3 and steel deck manufacturers are not considered to be fabricators or erectors.
N2.	FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM

56		The fabricator and erector shall establish, maintain and implement QC pro-
57		cedures to ensure that their work is performed in accordance with this Spec-
58		ification and the construction documents.
59		
60	1.	Material Identification
61		
62		Material identification procedures shall comply with the requirements of
63		Section 6.1 of the AISC Code of Standard Practice for Steel Buildings and
64		Bridges, hereafter referred to as the Code of Standard Practice, and shall be
65		monitored by the fabricator's quality control inspector (QCI).
66		momored by the horizontal b quanty control inspector (QCI).
67	2.	Fabricator Quality Control Procedures
68	2.	Tubileutor Quality Control Procedures
69		The fabricator's QC procedures shall address inspection of the following as
70		a minimum, as applicable:
		a minimum, as applicable.
71 72		
72		(a) Shop welding, high-strength bolting, and details in accordance with
73		Section N5
74		(b) Shop cut and finished surfaces in accordance with Section M2
75		(c) Shop heating for cambering, curving and straightening in accordance
76		with Section M2.1
77		(d) Tolerances for shop fabrication in accordance with Code of Standard
78		Practice Section 6.4
79		
80	3.	Erector Quality Control Procedures
81		
82		The erector's quality control procedures shall address inspection of the fol-
83		lowing as a minimum, as applicable:
84		
85		(a) Field welding, high-strength bolting, and details in accordance with
86		Section N5
87		(b) Steel deck in accordance with SDI Standard for Quality Control and
88		Quality Assurance for Installation of Steel Deck
89		(c) Headed steel stud anchor placement and attachment in accordance with
90		Section N5.4
91		(d) Field cut surfaces in accordance with Section M2.2
92		(e) Field heating for straightening in accordance with Section M2.1
93		(f) Tolerances for field erection in accordance with Code of Standard Prac-
94		tice Section 7.13
95		
96	N3.	FABRICATOR AND ERECTOR DOCUMENTS
97	1.00	
98	1.	Submittals for Steel Construction
99	1.	Submittelis for Steel Construction
100		The fabricator or erector shall submit the following documents for review
100		by the EOR or the EOR's designee, in accordance with <i>Code of Standard</i>
101		<i>Practice</i> Section 4.4, prior to fabrication or erection, as applicable:
102		rachee seenon 1.1, prior to norreason of crowton, as approable.
103		(a) Fabrication documents, unless fabrication documents have been fur-
104		nished by others
105		(b) Erection documents, unless erection documents have been furnished by
100		(b) Election documents, unless election documents have been furnished by others
107		Ould 5
108	2.	Available Documents for Steel Construction
109	4.	אימוומטור בסטנעווורוונס וטו סוררו לטוואנו עלעטוו
110		

111		
111		The following documents shall be available in electronic or printed form for
112 113		review by the EOR or the EOR's designee prior to fabrication or erection,
		as applicable, unless otherwise required in the construction documents to be
114		submitted:
115		
116		(a) For main structural steel elements, copies of material test reports in
117		accordance with Section A3.1.
118		(b) For steel castings and forgings, copies of material test reports in
119		accordance with Section A3.2. \Box
120		(c) For fasteners, copies of manufacturer's certifications in accordance
121		with Section A3.3. (1) Γ
122		(d) For anchor rods and threaded rods, copies of material test reports
123		in accordance with Section A3.4.
124		(e) For welding consumables, copies of manufacturer's certifications
125		in accordance with Section A3.5.
126		(f) For headed stud anchors, copies of manufacturer's certifications in
127		accordance with Section A3.6.
128		(g) Manufacturer's product data sheets or catalog data for welding
129		filler metals and fluxes to be used. The data sheets shall describe
130		the product, limitations of use, recommended or typical welding
131		parameters, and storage and exposure requirements, including bak-
132		ing, if applicable.
133		(h) Welding procedure specifications (WPS).
134		(i) Procedure qualification records (PQR) for WPS that are not
135		prequalified in accordance with <i>Structural Welding Code</i> —Steel
136		(AWS D1.1/D1.1M), hereafter referred to as AWS D1.1/D1.1M, or
137		Structural Welding Code—Sheet Steel (AWS D1.3/D1.3M), as ap-
138		plicable.
139		(j) Welding personnel performance qualification records (WPQR) and
140		continuity records.
141		(k) Fabricator's or erector's, as applicable, written QC manual that
142		shall include, as a minimum:
143		(1) Material control procedures
144		(2) Inspection procedures
145		(3) Nonconformance procedures
146		(1) Fabricator's or erector's, as applicable, QCI qualifications.
147		(m) Fabricator NDT personnel qualifications, if NDT is performed by
148		the fabricator.
149	NT 4	
150	N4.	INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL
151	1	
152	1.	Quality Control Inspector Qualifications
153		
154		QC welding inspection personnel shall be qualified to the satisfaction of the
155		fabricator's or erector's QC program, as applicable, and in accordance with
156		either of the following:
157		
158		(a) Associate welding inspectors (AWI) or higher as defined in <i>Stand</i> -
159		ard for the Qualification of Welding Inspectors (AWS B5.1), or
160		(b) Qualified under the provisions of AWS D1.1/D1.1M clause 6.1.4.
1/1		
161		
162		QC bolting inspection personnel shall be qualified on the basis of docu-
		QC bolting inspection personnel shall be qualified on the basis of docu- mented training and experience in structural bolting inspection.

165		The fabricator's or erector's QCI performing coating inspection shall be
166		qualified by training and experience as required by the firm's quality control
167		program. The QCI shall receive initial and periodic documented training.
168		
169	2.	Quality Assurance Inspector Qualifications
170	4.	Quanty Assurance inspector Quanications
170		OA wolding ingreators shall be qualified to the actisfaction of the OA
		QA welding inspectors shall be qualified to the satisfaction of the QA
172		agency's written practice, and in accordance with either of the following:
173		
174		(a) Welding inspectors (WI) or senior welding inspectors (SWI), as de-
175		fined in Standard for the Qualification of Welding Inspectors
176		(AWS B5.1), except AWI are permitted to be used under the direct
177		supervision of WI, who are on the premises and available when
178		weld inspection is being conducted, or
179		(b) Qualified under the provisions of AWS D1.1/D1.1M clause 6.1.4.
180		
181		QA bolting inspection personnel shall be qualified on the basis of docu-
182		mented training and experience in structural bolting inspection.
183		
184		QA coating inspection personnel shall be qualified to the satisfaction of the
185		QA agency's written practice. The inspector shall have received documented
186		training, have experience in coating inspection, and shall be qualified in ac-
187		cordance with one of the following:
188		condunce with one of the following.
189		(a) NACE, Coating Inspector Program (CIP) Level 1 Certification
190		(b) SSPC, Protective Coatings Inspector Program (PCI) Level 1 Certi-
191		fication
192		(c) On the basis of documented training and experience in coating ap-
192		plication and inspection.
193		pheation and inspection.
195	3.	NDT Personnel Qualifications
195	5.	ADT Tersonner Quanneations
190		NDT personnel, for NDT other than visual, shall be qualified in accordance
198		with their employer's written practice, which shall meet or exceed the crite-
198		ria of AWS D1.1/D1.1M clause 6.14.6, and,
200		The of A w S D1.1/D1.1W clause 0.14.0, and,
200		(a) Demound Qualification and Contification Nondestructive Testing
		(a) Personnel Qualification and Certification Nondestructive Testing
202		(ASNT SNT-TC-1A), or $(A = A + A + A + A + A + A + A + A + A + $
203		(b) Standard for the Qualification and Certification of Nondestructive
204		Testing Personnel (ANSI/ASNT CP-189).
205		
206	N5.	MINIMUM REQUIREMENTS FOR INSPECTION OF
207		STRUCTURAL STEEL BUILDINGS
208		
209	1.	Quality Control
210		
211		QC inspection tasks shall be performed by the fabricator's or erector's QCI,
212		as applicable, in accordance with Sections N5.4, N5.6, and N5.7.
213		
214		Tasks in Tables N5.4-1 through N5.4-3 and Tables N5.6-1 through N5.6-3
215		listed for QC are those inspections performed by the QCI to ensure that the
216		work is performed in accordance with the construction documents.
217		
218		For QC inspection, the applicable construction documents are the fabrication
219		documents and the erection documents, and the applicable referenced spec-
220		ifications, codes and standards.

001		
221		
222		User Note: The QCI need not refer to the design documents and project
223		specifications. The Code of Standard Practice Section 4.2.1(a) requires the
224		transfer of information from the contract documents (design documents and
225		project specification) into accurate and complete fabrication and erection
226		documents, allowing QC inspection to be based upon fabrication and erec-
		tion documents alone.
227		tion documents alone.
228		
229	2.	Quality Assurance
230		
231		The QAI shall review the material test reports and certifications as listed in
232		Section N3.2 for compliance with the construction documents.
233		
234		QA inspection tasks shall be performed by the QAI, in accordance with Sec-
235		tions N5.4, N5.6, and N5.7.
236		uons 10.4, 10.0, and 10.7.
		Tester in Teller NS 4.1 downed NS 4.2 and NS 6.1 downed NS 6.2 listed
237		Tasks in Tables N5.4-1 through N5.4-3 and N5.6-1 through N5.6-3 listed
238		for QA are those inspections performed by the QAI to ensure that the work
239		is performed in accordance with the construction documents.
240		
241		Concurrent with the submittal of such reports to the AHJ, EOR or owner,
242		the QA agency shall submit to the fabricator and erector:
243		
244		(a) Inspection reports
245		(b) NDT reports
245		
	2	Coordinated Inspection
247	3.	Coordinated Inspection
248		
249		When a task is noted to be performed by both QC and QA, it is permitted to
250		coordinate the inspection function between the QCI and QAI so that the in-
251		spection functions are performed by only one party. When QA relies upon
252		inspection functions performed by QC, the approval of the EOR and the AHJ
253		is required.
254		
255	4.	Inspection of Welding
256		inspectation of the same
257		Observation of welding operations and visual inspection of in-process and
258		
		completed welds shall be the primary method to confirm that the materials,
259		procedures and workmanship are in conformance with the construction doc-
260		uments.
261		
262		User Note: The technique, workmanship, appearance and quality of welded
263		construction are addressed in Section M2.4.
264		
265		As a minimum, welding inspection tasks shall be in accordance with Tables
266		N5.4-1, N5.4-2, and N5.4-3. In these tables, the inspection tasks are as fol-
267		lows:
268		10 11 01
		(a) Observe (O). The inspector shall abserve these items
269		(a) Observe (O): The inspector shall observe these items on a random basis.
270		Operations need not be delayed pending these inspections.
271		(b) Perform (P): These tasks shall be performed for each welded joint or
272		member.
273		

TABLE N5.4-1 Inspection Tasks Prior to Welding			
Inspection Tasks Prior to Welding	QC	QA	
Welder qualification records and continuity records	Р	0	
WPS available	Р	Р	
Manufacturer certifications for welding consumables available	P	P	
Material identification (type/grade) Welder identification system	0	0	
 Fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint or member can be identified. Die stamping of members subject to fatigue shall be prohibited unless approved by the engineer of record. 	0	ο	
 Fit-up of groove welds (including joint geometry) Joint preparations Dimensions (alignment, root opening, root face, bevel) Cleanliness (condition of steel surfaces) Tacking (tack weld quality and location) Backing type and fit (if applicable) 	0	0	
 Fit-up of CJP groove welds of HSS T-, Y- and K-connections without backing (including joint geometry) Joint preparations Dimensions (alignment, root opening, root face, bevel) Cleanliness (condition of steel surfaces) Tacking (tack weld quality and location) 	Ρ	ο	
Configuration and finish of access holes	0	0	
 Fit-up of fillet welds Dimensions (alignment, gaps at root) Cleanliness (condition of steel surfaces) Tacking (tack weld quality and location) 	0	0	
Check welding equipment	0	_	
PULA.			

274

TABLE N5.4-2 Inspection Tasks During Welding				
Inspection Tasks During Welding	QC	QA		
Control and handling of welding consumables Packaging Exposure control 	0	0		
No welding over cracked tack welds	0	0		
Environmental conditions Wind speed within limits Precipitation and temperature 	Ο	Ο		
 WPS followed Settings on welding equipment Travel speed Selected welding materials Shielding gas type/flow rate Preheat applied Interpass temperature maintained (min./max.) Proper position (F, V, H, OH) 	0	0		
 Welding techniques Interpass and final cleaning Each pass within profile limitations Each pass meets quality requirements 	О	0		
Placement and installation of steel headed stud an- chors	Р	Ρ		

275 276

$\langle \rangle$ TABLE N5.4-3 **Inspection Tasks After Welding** Inspection Tasks After Welding QC QA Welds cleaned 0 0 Size, length and location of welds Ρ Ρ Welds meet visual acceptance criteria Crack prohibition ٠ Weld/base-metal fusion • Crater cross section • Ρ Р Weld profiles Weld size Undercut ٠ Porosity • Ρ Р Arc strikes Р Р *k*-area[ª] Weld access holes in rolled heavy shapes and built-Р Ρ up heavy shapes[^{b]} Backing removed and weld tabs removed (if re-Ρ Ρ quired) Ρ Ρ Repair activities Document acceptance or rejection of welded joint or Р Р member ^[c]

				,1	
	appro	oval of the engineer of record	D	0	
	the <i>k</i> - ^[b] Afte A3.1c ^[c] Die	hen welding of doubler plates, continuity plates or stiffeners has l -area, visually inspect the web <i>k</i> -area for cracks within 3 in. (75 r er rolled heavy shapes (see Section A3.1c) and built-up heavy sl d) are welded, visually inspect the weld access hole for cracks. e stamping of members subject to fatigue shall be prohibi ed by the engineer of record.	mm) of hapes (the weld. (see Section	
277 278 279	5.	Nondestructive Testing of Welded Joints			
279 280 281	5a.	Procedures			
281 282 283 284 285		Ultrasonic testing (UT), magnetic particle testing (N (PT), and radiographic testing (RT), where required, QA in accordance with AWS D1.1/D1.1M.			
286 287		User Note: The technique, workmanship, appearance construction is addressed in Section M2.4.	and q	uality of we	lded
288 289 290	5b.	CJP Groove Weld NDT			
291 292 293 294 295 296 297		For structures in risk category III or IV, UT shall be per complete-joint-penetration (CJP) groove welds subject plied tension loading in butt, T- and corner joints, in me thick or greater. For structures in risk category II, UT QA on 10% of CJP groove welds in butt, T-, and contransversely applied tension loading, in materials 5/1 greater.	ect to aterial shall orner	transversely l 5/16 in. (8 i be performe joints subject	r ap- mm) d by ct to
298 299 300 301		User Note : For structures in risk category I, NDT of not required. For all structures in all risk categories, welds in materials less than 5/16 in. (8 mm) thick is n	, NDT	of CJP gro	
302 303 304	5c.	Welded Joints Subjected to Fatigue			
305 306 307 308		When required by Appendix 3, Table A-3.1, welded soundness to be established by radiographic or ultraso tested by QA as prescribed. Reduction in the rate of U	nic ins	spection sha	
308 309 310	5d.	Ultrasonic Testing Rejection Rate			
311 312 313 314 315 316 317 318 319 320 321		The ultrasonic testing rejection rate shall be determine welds containing defects divided by the number of we that contain acceptable discontinuities shall not be con- fects when the rejection rate is determined. For evaluat of continuous welds over 3 ft (1 m) in length where the in. (25 mm) or less, each 12 in. (300 mm) increment of be considered as one weld. For evaluating the rejecti- welds over 3 ft (1 m) in length where the effective three (25 mm), each 6 in. (150 mm) of length, or fraction the ered one weld.	elds consider ating t he effe or fract ion rat pat is g	ompleted. W ed as having he rejection ective throat ion thereof s te on continu greater than	felds g de- rate is 1 shall uous 1 in.
322 322 323	5e.	Reduction of Ultrasonic Testing Rate			
324 325		For projects that contain 40 or fewer welds, there sh the ultrasonic testing rate. The rate of UT is permi			

326approved by the EOR and the AHJ. Where the initial rate of UT is 100%,327the NDT rate for an individual welder or welding operator is permitted to be328reduced to 25%, provided the rejection rate, the number of welds containing329unacceptable defects divided by the number of welds completed, is demon-330strated to be 5% or less of the welds tested for the welder or welding opera-331tor. A sampling of at least 40 completed welds shall be made for such re-332duced evaluation on each project.

334 5f. Increase in Ultrasonic Testing Rate

For structures in risk category II and higher (where the initial rate for UT is 10%) the NDT rate for an individual welder or welding operator shall be increased to 100% should the rejection rate (the number of welds containing unacceptable defects divided by the number of welds completed) exceed 5% of the welds tested for the welder or welding operator. A sampling of at least 20 completed welds on each project shall be made prior to implementing such an increase. If the rejection rate for the welder or welding operator falls to 5% or less on the basis of at least 40 completed welds, the rate of UT may be decreased to 10%.

346 5g. Documentation

333

335

336

337338

339 340

341

342

343

344

345

347

348 349

350

351

352

353 354

355

357 358

359

360 361

362

363

364 365

366

367

368 369

370

371

372

373

374

375 376

377

378 379

380

381

All NDT performed shall be documented. For shop fabrication, the NDT report shall identify the tested weld by piece mark and location in the piece. For field work, the NDT report shall identify the tested weld by location in the structure, piece mark, and location in the piece.

When a weld is rejected on the basis of NDT, the NDT record shall indicate the location of the defect and the basis of rejection.

356 6. Inspection of High-Strength Bolting

Observation of bolting operations shall be the primary method used to confirm that the materials, procedures and workmanship incorporated in construction are in conformance with the construction documents and the provisions of the RCSC *Specification*.

- (a) For snug-tight joints, pre-installation verification testing as specified in Table N5.6-1 and monitoring of the installation procedures as specified in Table N5.6-2 are not applicable. The QCI and QAI need not be present during the installation of fasteners in snug-tight joints.
- (b) For pretensioned joints and slip-critical joints, when the installer is using the turn-of-nut or combined method with matchmarking techniques, the direct-tension-indicator method, or the twist-off-type tension control bolt method, monitoring of bolt pretensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI need not be present during the installation of fasteners when these methods are used by the installer.
- (c) For pretensioned joints and slip-critical joints, when the installer is using the turn-of-nut or combined method without matchmarking, or the calibrated wrench method, monitoring of bolt pretensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI shall be engaged in their assigned inspection duties during installation of fasteners when these methods are used by the installer.

As a minimum, bolting inspection tasks shall be in accordance with Tables N5.6-1, N5.6-2, and N5.6-3. In these tables, the inspection tasks are as follows:

382 383

384

385

386 387

388

389

390

- (a) Observe (O): The inspector shall observe these items on a random basis. Operations need not be delayed pending these inspections.
- (b) Perform (P): These tasks shall be performed for each bolted connection.

PUBLICA. FEB. 24. 2022

TABLE N5.6-1 Inspection Tasks Prior to Bolting		
Inspection Tasks Prior to Bolting	QC	QA
Manufacturer's certifications available for fastener materials	0	Р
Fasteners marked in accordance with ASTM requirements	0	0
Correct fasteners selected for the joint detail (grade, type, bolt length if threads are to be excluded from shear plane)	0	0
Correct bolting procedure selected for joint detail	0	0
Connecting elements, including the appropriate faying surface condition and hole preparation, if specified, meet applicable requirements	0	0
Pre-installation verification testing by installation personnel observed and docu- mented for fastener assemblies and methods used	Р	О
Protected storage provided for bolts, nuts, washers and other fastener compo- nents	0	0
10,00k		

TABLE N5.6-2 Inspection Tasks During Bolting		
Inspection Tasks During Bolting	QC	QA
Fastener assemblies placed in all holes and washers and nuts are positioned as required	0	О
Joint brought to the snug-tight condition prior to the pretensioning operation	0	Ο
Fastener component not turned by the wrench prevented from rotating	0	0
Fasteners are pretensioned in accordance with the RCSC <i>Specification</i> , pro- gressing systematically from the most rigid point toward the free edges	0	0
()		

TABLE N5.6-3 Inspection Tasks After Bolting		
Inspection Tasks After Bolting	QC	QA
Document acceptance or rejection of bolted connections	Р	Р

397	7.	Inspection of Galvanized Structural Steel Main Members
398		
399		Exposed cut surfaces of galvanized structural steel main members and ex-
400		posed corners of rectangular HSS shall be visually inspected for cracks sub-
401		sequent to galvanizing. Cracks shall be repaired or the member shall be re-
402		jected.
403		
404		User Note: It is normal practice for fabricated steel that requires hot dip
405		galvanizing to be delivered to the galvanizer and then shipped to the jobsite.
406		As a result, inspection on site is common.
407	0	
408	8.	Other Inspection Tasks
409		
410		The fabricator's QCI shall inspect the fabricated steel to verify compliance
411		with the details shown on the fabrication documents.
412		User Neter This is shaden such items of the same of smallestics of sheep is int
413 414		User Note: This includes such items as the correct application of shop joint details at each connection.
415		
415		The erector's QCI shall inspect the erected steel frame to verify compliance
417		with the field installed details shown on the erection documents.
418		with the field instance details shown on the election documents.
419		User Note: This includes such items as braces, stiffeners, member locations,
420		and correct application of field joint details at each connection.
421		
422		The QAI shall be on the premises for inspection during the placement of
423		anchor rods and other embedments supporting structural steel for compli-
424		ance with the construction documents. As a minimum, the diameter, grade,
425		type and length of the anchor rod or embedded item, and the extent or depth
426		of embedment into the concrete, shall be verified and documented prior to
427		placement of concrete.
428		
429		The QAI shall inspect the fabricated steel or erected steel frame, as applica-
430		ble, to verify compliance with the details shown on the construction docu-
431		ments.
432 433		Usen Neter This is held a such items of human stifferene menden la stiens
433		User Note: This includes such items as braces, stiffeners, member locations and the correct application of joint details at each connection.
434		and the correct application of joint details at each connection.
436		The acceptance or rejection of joint details and the correct application of
437		joint details shall be documented.
438		Jour admin chan co accomination
439	N6.	APPROVED FABRICATORS AND ERECTORS
440		
441		When the fabricator or erector has been approved by the AHJ to perform all
442		inspections without the involvement of a third-party, independent QAI,
443		the fabricator or erector shall perform and document all of the QA inspec-
444		tions required by this Chapter.
445		NDT of welds completed in an approved fabricator's shop is permitted to be
446		performed by that fabricator when approved by the AHJ. When the fabrica-
447		tor performs the NDT, the NDT reports prepared by the fabricator's NDT
448		personnel shall be available for review by the QA agency.
449 450		At completion of fabrication the approved fabricator shall submit a contin
430 451		At completion of fabrication, the approved fabricator shall submit a certifi- cate of compliance to the AHJ stating that the materials supplied and work
452		performed by the fabricator are in accordance with the construction
152		Performed by the fublication are in accordance with the construction

453documents. At completion of erection, the approved erector shall submit a454certificate of compliance to the AHJ stating that the materials supplied and455work performed by the erector are in accordance with the construction doc-456uments.457

458 N7. NONCONFORMING MATERIAL AND WORKMANSHIP

460Identification and rejection of material or workmanship that is not in con-461formance with the construction documents is permitted at any time during462the progress of the work. However, this provision shall not relieve the owner463or the inspector of the obligation for timely, in-sequence inspections. Non-464conforming material and workmanship shall be brought to the immediate465attention of the fabricator or erector, as applicable.

- 467 Nonconforming material or workmanship shall be brought into conformance468 or made suitable for its intended purpose as determined by the EOR.
- 470 Concurrent with the submittal of such reports to the AHJ, EOR or owner, 471 the QA agency shall submit to the fabricator and erector:
- 473 (a) Nonconformance reports

459

466

469

472

474

475

478

484

489

(b) Reports of repair, replacement or acceptance of nonconforming items

476N8.MINIMUM REQUIREMENTS FOR SHOP OR FIELD APPLIED477COATINGS

When coating or touch up is specified in the contract documents to be performed by the fabricator or erector, the fabricator or erector, as applicable,
shall establish, maintain, and implement QC procedures to ensure the proper
application of coatings on structural steel in accordance with the coating
manufacturer's product data sheet.

485 User Note: When there is a conflict between the coating manufacturer's 486 product data sheet and the contract documents for the proper application of 487 a coating, it is recommended to clarify with the engineer of record which 488 will govern.

490 Unless there is direction to the contrary in the contract documents, observa491 tion of the coating process prior to, during, and after the application of the
492 coating shall be the primary method to confirm that the coating material,
493 procedures, and workmanship are in conformance with the construction doc494 uments.

1 **APPENDIX 1** 2 3 DESIGN BY ADVANCED ANALYSIS 4 5 6 This Appendix permits the use of advanced methods of structural analysis to directly 7 model system and member imperfections, and/or allow for the redistribution of mem-8 ber and connection forces and moments as a result of localized yielding. 9 10 The appendix is organized as follows: 11 12 1.1 General Requirements 13 1.2 Design by Elastic Analysis 14 1.3 Design by Inelastic Analysis 15 16 GENERAL REQUIREMENTS 1.1. 17 18 The analysis methods permitted in this Appendix shall ensure that equilibrium 19 and compatibility are satisfied for the structure in its deformed shape, includ-20 ing all flexural, shear, axial, and torsional deformations, and all other compo-21 nent and connection deformations that contribute to the displacements of the 22 structure. 23 24 Design by the methods of this Appendix shall be conducted in accordance with 25 Section B3.1, using load and resistance factor design (LRFD). 26 27 **DESIGN BY ELASTIC ANALYSIS** 1.2. 28 29 1. **General Stability Requirements** 30 31 Design by a second-order elastic analysis that includes the direct modeling of 32 system and member imperfections is permitted for all structures subject to the 33 limitations defined in this section. All requirements of Section C1 apply, with 34 additional requirements and exceptions as noted below. All load-dependent 35 effects shall be calculated at a level of loading corresponding to LRFD load combinations. 36 37 38 The influence of torsion shall be considered, including its impact on member 39 deformations and second-order effects. 40 41 The provisions of this method apply only to doubly symmetric members, in-42 cluding I-shapes, HSS and box sections, unless evidence is provided that the 43 method is applicable to other member types. 44 45 **Calculation of Required Strengths** 2. 46 47 For design using a second-order elastic analysis that includes the direct mod-48 eling of system and member imperfections, the required strengths of compo-49 nents of the structure shall be determined from an analysis conforming to Sec-50 tion C2, with additional requirements and exceptions as noted in the following. 51 52 **General Analysis Requirements** 2a.

53		
54		The analysis of the structure shall also conform to the following requirements:
55		The analysis of the structure shan also comorn to the following requirements.
56		(a) Torsional member deformations shall be considered in the analysis.
57		(a) Torsional memoer deformations shall be considered in the analysis.
58		(b) The analysis shall consider geometric nonlinearities, including $P-\Delta$, $P-\Delta$
58 59		
		δ , and twisting effects as applicable to the structure. The use of the
60		approximate procedures appearing in Appendix 8 is not permitted.
61		
62		User Note: A rigorous second-order analysis of the structure is an im-
63		portant requirement for this method of design. Many analysis routines
64		common in design offices are based on a more traditional second-order
65		analysis approach that includes only $P-\Delta$ and $P-\delta$ effects without con-
66		sideration of additional second-order effects related to member twist,
67		which can be significant for some members with unbraced lengths near
68		or exceeding L_r . The type of second-order analysis defined herein also
69		includes the beneficial effects of additional member torsional strength
70		and stiffness due to warping restraint, which can be conservatively ne-
71		glected. Refer to the Commentary for additional information and guid-
72		ance.
73		
74		(c) In all cases, the analysis shall directly model the effects of initial imper-
75		fections due to both points of intersection of members displaced from
76		their nominal locations (system imperfections), and initial out-of-
77		straightness or offsets of members along their length (member imper-
78		fections). The magnitude of the initial displacements shall be the max-
79		imum amount considered in the design; the pattern of initial displace-
80		ments shall be such that it provides the greatest destabilizing effect for
81		the load combination being considered. The use of notional loads to
82		represent either type of imperfection is not permitted.
83		
84		User Note: Initial displacements similar in configuration to both dis-
85		placements due to loading and anticipated buckling modes should be
86		considered in the modeling of imperfections. The magnitude of the in-
87		itial points of intersection of members displaced from their nominal lo-
88		cations (system imperfections) should be based on permissible con-
89		struction tolerances, as specified in the AISC Code of Standard Practice
90		for Steel Buildings and Bridges or other governing requirements, or on
91		actual imperfections, if known. When these displacements are due to
92		erection tolerances, 1/500 is often considered, based on the tolerance of
93		the out-of-plumbness ratio specified in the Code of Standard Practice.
94		For out-of-straightness of members (member imperfections), a 1/1000
95		out-of-straightness ratio is often considered. Refer to the Commentary
96		for additional guidance.
97		
98	2b.	Adjustments to Stiffness
99		
100		The analysis of the structure to determine the required strengths of components
101		shall use reduced stiffnesses as defined in Section C2.3. Such stiffness reduc-
102		tion, including factors of 0.8 and τ_b , shall be applied to all stiffnesses that are
103		considered to contribute to the stability of the structure. The use of notional
104		loads to represent τ_b is not permitted.
105		
106		User Note: Stiffness reduction should be applied to all member properties
107		including torsional properties (GJ and EC_w) affecting twist of the member
108		cross section. One practical method of including stiffness reduction is to reduce

109E and G by $0.8\tau_b$, thereby leaving all cross-section geometric properties at their110nominal value.111111

112Applying this stiffness reduction to some members and not others can, in some113cases, result in artificial distortion of the structure under load and thereby lead114to an unintended redistribution of forces. This can be avoided by applying the115reduction to all members, including those that do not contribute to the stability116of the structure.

118 **3.** Calculation of Available Strengths

117

119 120

121

122 123

124

125 126

127

128

129

131 132

133

134

136 137

138 139

140

149

156

158

For design using a second-order elastic analysis that includes the direct modeling of system and member imperfections, the available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D through K, as applicable, except as defined below, with no further consideration of overall structure stability.

The nominal compressive strength of members, P_n , may be taken as the crosssection compressive strength, F_yA_g , or as F_yA_e for members with slender elements, where A_e is defined in Section E7.

130 1.3. DESIGN BY INELASTIC ANALYSIS

User Note: Design by the provisions of this section is independent of the requirements of Section 1.2.

135 1. General Requirements

The design strength of the structural system and its members and connections shall equal or exceed the required strength as determined by the inelastic analysis. The provisions of Section 1.3 do not apply to seismic design.

The inelastic analysis shall take into account: (a) flexural, shear, axial, and 141 142 torsional member deformations, and all other component and connection de-143 formations that contribute to the displacements of the structure; (b) secondorder effects (including P- Δ , P- δ , and twisting effects); (c) geometric imper-144 145 fections; (d) stiffness reductions due to inelasticity, including partial yielding 146 of the cross section that may be accentuated by the presence of residual stresses; and (e) uncertainty in system, member, and connection strength and 147 stiffness. 148

150Strength limit states detected by an inelastic analysis that incorporates all of151the preceding requirements in this Section are not subject to the corresponding152provisions of this Specification when a comparable or higher level of reliability153is provided by the analysis. Strength limit states not detected by the inelastic154analysis shall be evaluated using the corresponding provisions of Chapters D155through K.

157 Connections shall meet the requirements of Section B3.4.

Members and connections subject to inelastic deformations shall be shown to
have ductility consistent with the intended behavior of the structural system.
Force redistribution due to rupture of a member or connection is not permitted.

163 Any method that uses inelastic analysis to proportion members and connec-164 tions to satisfy these general requirements is permitted. A design method 165 based on inelastic analysis that meets the preceding strength requirements, the 166 ductility requirements of Section 1.3.2, and the analysis requirements of Sec-167 tion 1.3.3 satisfies these general requirements.

168 2. **Ductility Requirements**

169 Members and connections with elements subject to yielding shall be propor-170 tioned such that all inelastic deformation demands are less than or equal to 171 their inelastic deformation capacities. In lieu of explicitly ensuring that the 172 inelastic deformation demands are less than or equal to their inelastic defor-173 mation capacities, the following requirements shall be satisfied for steel mem-174 bers subject to plastic hinging.

175 2a. Material

176 The specified minimum yield stress, F_{ν} , of members subject to plastic hinging 177 178 shall not exceed 65 ksi (450 MPa).

179 2b. **Cross Section**

181 The cross section of members at plastic hinge locations shall be doubly symmetric with width-to-thickness ratios of their compression elements not ex-182 183 ceeding λ_{pd} , where λ_{pd} is equal to λ_p from Table B4.1b, except as modified 184 below:

For the width-to-thickness ratio, h/t_w , of webs of I-shaped members, 186 (a) 187 rectangular HSS, and box sections subject to combined flexure and 188 compression

190 (1) When
$$P_u / \phi_c P_v \le 0.125$$

193 194 195

196

197

205

206 207

189

180

185

$$\lambda_{pd} = 3.76 \sqrt{\frac{E}{F_y}} \left(1 - \frac{2.75 P_u}{\phi_c P_y} \right)$$

(2) When $P_u / \phi_c P_v > 0.125$

$$\lambda_{pd} = 1.12 \sqrt{\frac{E}{F_y}} \left(2.33 - \frac{P_u}{\phi_c P_y} \right) \ge 1.49 \sqrt{\frac{E}{F_y}}$$
(A-1-2)

where

198	$P_u =$	required axial strength in compression, using LRFD load
199		combinations, kips (N)
200	$P_y =$	$F_y A_g$ = axial yield strength, kips (N)
201	h =	as defined in Section B4.1, in. (mm)
202	$t_w =$	web thickness, in. (mm)
203	ϕ_c =	resistance factor for compression $= 0.90$
204		

(b) For the width-to-thickness ratio, b/t, of flanges of rectangular HSS and box sections, and for flange cover plates between lines of fasteners or welds

> Specification for Structural Steel Buildings, xx, 2022 Ballot Four Dated July 30,2021 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

208							
209		$\lambda_{pd} = 0.94 \sqrt{E/F_y}$	(A-1-3)				
210	where						
211		b = as defined in Section B4.1, in. (mm)					
212		t = as defined in Section B4.1, in. (mm)					
213							
214		(c) For the diameter-to-thickness ratio, D/t , of round HSS in fl	lexure				
215							
216		$\lambda_{pd} = 0.045 E/F_{y}$	(A-1-4)				
217							
218		where					
219		D = outside diameter of round HSS, in. (mm)					
220	2c.	Unbraced Length					
220	20.						
221		In prior the number comparts that contain plactic hinges the la	torally up				
222		In prismatic member segments that contain plastic hinges, the la					
223		braced length, L_b , shall not exceed L_{pd} , determined as follows. Fo subject to flexure only, or to flexure and axial tension, L_b shall be t					
224		length between points braced against lateral displacement of the co					
225		flange, or between points braced to prevent twist of the cross se					
220		members subject to flexure and axial compression, L_b shall be ta					
228		length between points braced against both lateral displacement in					
229		axis direction and twist of the cross section.	the minor				
230							
231		(a) For I-shaped members bent about their major axis:					
232		$L_{pd} = \left(0.12 - 0.076 \frac{M_1'}{M_2}\right) \frac{E}{F_y} r_y$	(A-1-5)				
		M_2) F_y	~ /				
233							
234		where					
235		r_y = radius of gyration about minor axis, in. (mm)					
236							
237 238		(1) When the magnitude of the bending moment at any loca	tion within				
238 239		the unbraced length exceeds M_2					
240		$M_1'/M_2 = +1$	(A-1-6a)				
241							
242		Otherwise:					
243		(2) When $M = \langle (M + M) \rangle / 2$					
244		(2) When $M_{mid} \le (M_1 + M_2)/2$					
245			(A + 1)				
246		$M_1' = M_1$	(A-1-6b)				
247		(2) With $M \to (M + M)/2$					
248		(3) When $M_{mid} > (M_1 + M_2)/2$					
249			(
250		$M_1' = (2M_{mid} - M_2) < M_2$	(A-1-6c)				
251							
252		where					
253		M_1 = smaller moment at end of unbraced length, kip-in	(IN-mm)				

254		M_2 = larger moment at end of unbraced length, kip-in. (N-mm)
255		(shall be taken as positive in all cases)
256		M_{mid} = moment at middle of unbraced length, kip-in. (N-mm)
257		M_1' = effective moment at end of unbraced length opposite from
258		M_2 , kip-in. (N-mm)
		M_2 , kip-ini. (iv-inin)
259		
260		The moments M_1 and M_{mid} are individually taken as positive when
261		they cause compression in the same flange as the moment, M_2 , and
262		taken as negative otherwise.
263		
264		(b) For solid rectangular bars and for rectangular HSS and box sections bent
265		about their major axis
266		
267		$L_{pd} = \left(0.17 - 0.10 \frac{M_1'}{M_2}\right) \frac{E}{F_y} r_y \ge 0.10 \frac{E}{F_y} r_y \qquad (A-1-7)$
268		
269		For all types of members subject to axial compression and containing plastic
270		hinges, the laterally unbraced lengths about the cross section major and minor
271		axes shall not exceed $4.71r_x\sqrt{E/F_y}$ and $4.71r_y\sqrt{E/F_y}$, respectively.
272		
273		There is no L_{pd} limit for member segments containing plastic hinges in the
274		following cases:
275		
276		(a) Members with round or square cross sections subject only to flexure or to
277		combined flexure and tension
278		(b) Members subject only to flexure about their minor axis or combined ten-
279		sion and flexure about their minor axis
280		(c) Members subject only to tension
281	2d.	Axial Force
282		
283		To ensure ductility in compression members with plastic hinges, the de-
284		sign strength in compression shall not exceed $0.75F_yA_g$.
285	3.	Analysis Requirements
286		
287		The structural analysis shall satisfy the general requirements of Section 1.3.1.
288		These requirements are permitted to be satisfied by a second-order inelastic
289		analysis meeting the requirements of this Section.
290		
291		Exception: For continuous beams not subject to axial compression, a first-or-
292		der inelastic or plastic analysis is permitted and the requirements of Sections
293		1.3.3b and 1.3.3c are waived.
294		
295		User Note: Refer to the Commentary for guidance in conducting a traditional
296		plastic analysis and design in conformance with these provisions.
297	3 a.	Material Properties and Yield Criteria
298		
299		The specified minimum yield stress, F_y , and the stiffness of all steel members
300		and connections shall be reduced by a factor of 0.9 for the analysis, except as
301		stipulated in Section 1.3.3c.

Specification for Structural Steel Buildings, xx, 2022 Ballot Four Dated July 30,2021 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

304 ing moment shall be included in the calculation of the inelastic response. 305 306 The plastic strength of the member cross section shall be represented in the 307 analysis either by an elastic-perfectly-plastic yield criterion expressed in terms 308 of the axial force, major axis bending moment, and minor axis bending mo-309 ment, or by explicit modeling of the material stress-strain response as elastic-310 perfectly-plastic. 311 **Geometric Imperfections 3b**. 312 313 In all cases, the analysis shall directly model the effects of initial imperfections 314 due to both points of intersection of members displaced from their nominal locations (system imperfections), and initial out-of-straightness or offsets of 315 members along their length (member imperfections). The magnitude of the in-316 317 itial displacements shall be the maximum amount considered in the design; the 318 pattern of initial displacements shall be such that it provides the greatest desta-319 bilizing effect. **Residual Stress and Partial Yielding Effects** 320 3c. 321 322 The analysis shall include the influence of residual stresses and partial yield-323 ing. This shall be done by explicitly modeling these effects in the analysis or 324 by reducing the stiffness of all structural components as specified in Section 325 C2.3. 326 If the provisions of Section C2.3 are used, then: 327 328 329 (a) The 0.9 stiffness reduction factor specified in Section 1.3.3a shall be re-330 placed by the reduction of the elastic modulus, E, by 0.8 as specified in

The influence of axial force, major axis bending moment, and minor axis bend-

302 303

331

332

333334

335

336

337

(b) the elastic-perfectly-plastic yield criterion, expressed in terms of the axial force, major axis bending moment, and minor axis bending moment, shall satisfy the cross-section strength limit defined by Equations H1-1a and H1-1b using $P_c = 0.9P_y$, $M_{cx} = 0.9M_{px}$, and $M_{cy} = 0.9M_{py}$.

Section C2.3, and

APPENDIX 2 DESIGN OF FILLED COMPOSITE MEMBERS (HIGH-STRENGTH)

This appendix provides methods for calculating the design strength of filled composite members constructed from either one or both materials (steel or concrete) with strengths above the limits noted in Section II.3. All other provisions of Chapter I shall apply.

11 2.1. RECTANGULAR FILLED COMPOSITE MEMBERS12

1. Limitations

For rectangular filled composite members, the following limitations shall be met:

- (a) The area of the steel section shall comprise at least 1% of the total composite cross section.
- (b) Concrete shall be normal weight, and the specified compressive strength of concrete, f'_c , shall not exceed 15 ksi (103 MPa).
 - (c) The specified minimum yield stress of steel, F_y , shall not exceed 100 ksi (690 MPa).
- (d) The maximum permitted width-to-thickness ratio for compression steel elements shall be limited to $5.00 \sqrt{E/F_y}$.
 - (e) Longitudinal reinforcement is not required. If longitudinal reinforcement is provided, it shall not be considered in the calculation of available strength, and the minimum reinforcement requirements of Sections I2.2a and I3.4a shall apply.
- 31 2. Compressive Strength

The available compressive strength shall be determined in accordance with Section I2.2b with the following modifications:

$$P_{no} = F_n A_s + 0.85 f_c' A_c \tag{A-2-1}$$

$$F_n = (1.0 - 0.075\lambda)F_y \tag{A-2-2}$$

where

 A_c = area of concrete, in.² (mm²)

 A_s = area of steel section, in.² (mm²)

- F_n = critical buckling stress for steel section of filled composite members, kips (N)
- P_{no} = nominal axial compressive strength without consideration of length effects, kips (N)
- λ = maximum width-to-thickness ratio of compression steel elements multiplied by $\sqrt{F_y/E}$

3. Flexural Strength

The available flexural strength shall be determined as follows:

 $\phi_b = 0.90 \text{ (LRFD)} \qquad \Omega_b = 1.67 \text{ (ASD)}$

The nominal flexural strength, M_n , shall be determined as 90% of the moment corresponding to a stress distribution over the composite cross section assuming that steel components have reached a stress of F_y in tension and F_n in compression, where F_n is calculated using Equation A-2-2, and concrete components in compression have reached a stress of $0.85 f'_c$, where f'_c is the specified compressive strength of concrete, ksi (MPa).

62 4. Combined Flexure and Axial Force

12. V

The interaction of flexure and compression shall be limited by Equations I5-1a and I5-1b where the term c_p is determined using Equation A-2-3 and c_m is determined using Equation A-2-4.

$$c_p = 0.175 - \frac{0.075}{B/H} + \lambda \left(\frac{0.3}{P_n/P_{no}}\right) \left(\frac{f_c'}{F_y}\right)$$
(A-2-3)

 $c_m = 0.6 + 0.3 \left(\frac{P_n}{P_{no}}\right)^2 + 0.6\lambda \left(\frac{B}{H}\right) \left(\frac{F_{y,max}}{F_y}\right) \left(\frac{f_c'}{F_y}\right)$ (A-2-4)

where

B = flange width of rectangular cross section, in. (mm) H = web depth of rectangular cross section, in. (mm) $F_{y,max} = \text{maximum permitted yield stress of steel} = 100 \text{ ksi (690 MPa)}$ $P_n = \text{nominal axial strength calculated in accordance with Section 2.1.2, kips (N)}$ $P_{no} = \text{nominal axial compressive strength without consideration of length effects calculated in accordance with Section 2.1.2, kips (N)}$

APPENDIX 3

FATIGUE

6 This appendix applies to members and connections subject to high-cycle loading 7 within the elastic range of stresses of frequency and magnitude sufficient to initiate 8 cracking and progressive failure. 9

10 User Note: See AISC Seismic Provisions for Structural Steel Buildings for structures subject to seismic loads.

The appendix is organized as follows:

1 2

3 4 5

11

12 13

14 15

16

17

18

19

20

21

23 24

25

26

27

28

29

30

- 3.1. General Provisions
- 3.2. Calculation of Maximum Stresses and Stress Ranges
- 3.3. Plain Material and Welded Joints
- 3.4. Bolts and Threaded Parts
 - 3.5. Fabrication and Erection Requirements for Fatigue
- 3.6. Nondestructive Examination Requirements for Fatigue
- 22 3.1. **GENERAL PROVISIONS**
 - The fatigue resistance of members consisting of shapes or plate shall be determined when the number of cycles of application of live load exceeds 20,000. No evaluation of fatigue resistance of members consisting of HSS in building-type structures subject to code mandated wind loads is required. When the applied cyclic stress range is less than the threshold allowable stress range, F_{TH} , no further evaluation of fatigue resistance is required. See Table A-3.1.
- 31 The engineer of record shall provide either complete details including weld 32 sizes or shall specify the planned cycle life and the maximum range of mo-33 ments, shears and reactions for the connections.
- 34 The provisions of this Appendix shall apply to stresses calculated on the 35 basis of the applied cyclic load spectrum. The maximum permitted stress due to peak cyclic loads shall be $0.66F_{y}$. In the case of a stress reversal, the 36 37 stress range shall be computed as the numerical sum of maximum repeated 38 tensile and compressive stresses or the numerical sum of maximum shearing 39 stresses of opposite direction at the point of probable crack initiation.
- 40 The cyclic load resistance determined by the provisions of this Appendix is 41 applicable to structures with suitable corrosion protection or subject only to 42 mildly corrosive atmospheres, such as normal atmospheric conditions. 43
- 44 The cyclic load resistance determined by the provisions of this Appendix is 45 applicable only to structures subject to temperatures not exceeding 300°F 46 (150°C).
- 48 3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS 49 RANGES 50
- 51 Calculated stresses shall be based upon elastic analysis. Stresses shall not 52 be amplified by stress concentration factors for geometrical discontinuities.

54 For bolts and threaded rods subject to axial tension, the calculated stresses 55 shall include the effects of prying action, if any. In the case of axial stress 56 combined with bending, the maximum stresses of each kind shall be those 57 determined for concurrent arrangements of the applied load. 58

For members having symmetric cross sections, the fasteners and welds shall be arranged symmetrically about the axis of the member, or the total stresses including those due to eccentricity shall be included in the calculation of the stress range.

For axially loaded angle members where the center of gravity of the connecting welds lies between the line of the center of gravity of the angle cross section and the center of the connected leg, the effects of eccentricity shall be ignored. If the center of gravity of the connecting welds lies outside this zone, the total stresses, including those due to joint eccentricity, shall be included in the calculation of stress range.

71 3.3. PLAIN MATERIAL AND WELDED JOINTS

In plain material and welded joints, the range of stress due to the applied cyclic loads shall not exceed the allowable stress range computed as follows.

For stress categories A, B, B', C, D, E and E', the allowable stress (a) range, F_{SR} , shall be determined by Equation A-3-1 or A-3-1M, as follows:

$$F_{SR} = 1,000 \left(\frac{C_f}{n_{SR}}\right)^{0.333} \ge F_{TH}$$
 (A-3-1)

$$F_{SR} = 6\,900 \left(\frac{C_f}{n_{SR}}\right)^{0.333} \ge F_{TH}$$
 (A-3-1M)

53

59

60

61

62

63

64

65

66

67 68

69

70

72 73

74

75

76

77

78

79

80

81

82	where
83	C_f = constant from Table A-3.1 for the fatigue category
84	F_{SR} = allowable stress range, ksi (MPa)
85	
86	F_{TH} = threshold allowable stress range, maximum stress range
87	for indefinite design life from Table A-3.1, ksi (MPa)
88	n_{SR} = number of stress range fluctuations in design life
89	
90	(b) For stress category F, the allowable stress range, F_{SR} , shall be deter-
91	mined by Equation A-3-2 or A-3-2M as follows:

94
$$F_{SR} = 100 \left(\frac{1.5}{n_{SR}}\right)^{0.167} \ge 8 \text{ ksi}$$
 (A-3-2)

$$F_{SR} = 690 \left(\frac{1.5}{n_{SR}}\right)^{0.167} \ge 55 \text{ MPa}$$
 (A-3-2M)

0.1.67

- (c) For tension-loaded plate elements connected at their end by cruciform, T or corner details with partial-joint-penetration (PJP) groove welds transverse to the direction of stress, with or without reinforcing or contouring fillet welds, or if joined with only fillet welds, the allowable stress range on the cross section of the tension-loaded plate element shall be determined as the lesser of the following:
 - (1) Based upon crack initiation from the toe of the weld on the tensionloaded plate element (i.e., when $R_{PJP} = 1.0$), the allowable stress range, F_{SR} , shall be determined by Equation A-3-1 or A-3-1M for stress category C.
- (2) Based upon crack initiation from the root of the weld, the allowable stress range, F_{SR} , on the tension loaded plate element using transverse PJP groove welds, with or without reinforcing or contouring fillet welds, the allowable stress range on the cross section at the root of the weld shall be determined by Equation A-3-3 or A-3-3M, for stress category C' as follows:

$$F_{SR} = 1,000R_{PJP} \left(\frac{4.4}{n_{SR}}\right)^{0.333}$$
 (A-3-3)

$$R_{R} = 6900R_{PJP} \left(\frac{4.4}{n_{SR}}\right)^{0.333}$$
 (A-3-3M)

where

 R_{PJP} , the reduction factor for reinforced or nonreinforced transverse PJP groove welds, is determined as follows:

$$R_{PJP} = \frac{0.65 - 0.59 \left(\frac{2a}{t_p}\right) + 0.72 \left(\frac{w}{t_p}\right)}{t_p^{0.167}} \le 1.0$$
 (A-3-4)

$$R_{PJP} = \frac{1.12 - 1.01 \left(\frac{2a}{t_p}\right) + 1.24 \left(\frac{w}{t_p}\right)}{t_p^{0.167}} \le 1.0$$
 (A-3-4M)

- 2a = length of the nonwelded root face in the direction of the thickness of the tension-loaded plate, in. (mm) $t_p =$ thickness of tension loaded plate, in. (mm)
 - w = leg size of the reinforcing or contouring fillet, if any, in the direction of the thickness of the tension-loaded plate, in. (mm)
- Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

137	
138	(3) Based upon crack initiation from the roots of a pair of transverse
139	fillet welds on opposite sides of the tension loaded plate element,
140	the allowable stress range, F_{SR} , on the cross section at the root of
141	the welds shall be determined by Equation A-3-5 or A-3-5M, for
142	stress category C" as follows:
143	
144	$F_{SR} = 1,000R_{FIL} \left(\frac{4.4}{n_{SR}}\right)^{0.333} $ (A-3-5)
145	
146	$F_{SR} = 6900R_{FIL} \left(\frac{4.4}{n_{SR}}\right)^{0.333} $ (A-3-5M)
147	where
148	R_{FIL} = reduction factor for joints using a pair of transverse fillet
149	welds only
150	

category C will control.

151
$$= \frac{0.06 + 0.72(w/t_p)}{t_p^{0.167}} \le 1.0$$
 (A-3-6)

152
$$= \frac{0.103 + 1.24 \left(w/t_p \right)}{t_p^{0.167}} \le 1.0$$
 (A-3-6M)

If $R_{FIL} = 1.0$, the stress range will be limited by the weld toe and category C will control.

If $R_{PJP} = 1.0$, the stress range will be limited by the weld toe and

User Note: Stress categories C' and C'' are cases where the fatigue crack initiates in the root of the weld. These cases do not have a fatigue threshold and cannot be designed for an infinite life. Infinite life can be approximated by use of a very high cycle life such as 2×10^8 . Alternatively, if the size of the weld is increased such that R_{FIL} or R_{PJP} is equal to 1.0, then the base metal controls, resulting in stress category C, where there is a fatigue threshold and the crack initiates at the toe of the weld.

165 3.4. BOLTS AND THREADED PARTS

In bolts and threaded parts, the range of stress of the applied cyclic load shall not exceed the allowable stress range computed as follows.

- (a) For mechanically fastened connections loaded in shear, the maximum range of stress in the connected material of the applied cyclic load shall not exceed the allowable stress range computed using Equation A-3-1 or A-3-1M, where C_f and F_{TH} are taken from Section 2 of Table A-3.1.
- (b) For high-strength bolts, common bolts, threaded anchor rods, and hanger rods with cut, ground or rolled threads, the maximum range of tensile stress on the net tensile area from applied axial load and moment plus load due to prying action shall not exceed the allowable stress range computed using Equation A-3-1 or A-3-1M, where C_f and F_{TH} are taken from Case 8.5 (stress category G). The net area in tension, A_t , is given by Equation A-3-7 or A-3-7M.

183
$$A_t = \frac{\pi}{4} \left(d_b - \frac{0.9743}{n} \right)^2$$
(A-3-7)

186

195

205

218

227

228

229

$$A_t = \frac{\pi}{4} (d_b - 0.9382 \, p)^2 \tag{A-3-7M}$$

187 where

188	d_b = nominal diameter (body or shank diameter), in. (mm)
189	n = threads per in. (per mm)
190	p = pitch, in. per thread (mm per thread)
191	
192	For joints in which the material within the grip is not limited to steel or joints
193	that are not tensioned to the requirements of Table J3.1 or J3.1M, all axial load
194	and moment applied to the joint plus effects of any prying action shall be as-

sumed to be carried exclusively by the bolts or rods.

196 197 For joints in which the material within the grip is limited to steel and which 198 are pretensioned to the requirements of Table J3.1 or J3.1M, an analysis of the 199 relative stiffness of the connected parts and bolts is permitted to be used to 200 determine the tensile stress range in the pretensioned bolts due to the total ap-201 plied cyclic load and moment, plus effects of any prying action. Alternatively, 202 the stress range in the bolts shall be assumed to be equal to the stress on the 203 net tensile area due to 20% of the absolute value of the applied cyclic axial 204 load and moment from dead, live and other loads.

206 User Note: Where provisions of this AISC Specification differ from provisions of 207 the RCSC Specification for Structural Joints Using High-Strength Bolts or the AWS 208 Welding Code-Steel D1.1/D1.1M, the provisions of this AISC Specification govern. 209 Some differences between the AISC Specification and the RCSC Specification re-210 lated to fatigue are described in the commentary.

FABRICATION AND ERECTION REQUIREMENTS FOR FATIGUE 211 3.5. 212

- 213 Longitudinal steel backing, if used, shall be continuous. If splicing of steel 214 backing is required for long joints, the splice shall be made with a complete-215 joint-penetration (CJP) groove weld, ground flush to permit a tight fit. If fillet 216 welds are used to attach left-in-place longitudinal backing, they shall be con-217 tinuous.
- In transverse CJP groove welded T- and corner-joints, a reinforcing fillet weld, 219 220 not less than 1/4 in. (6 mm) in size, shall be added at reentrant corners. 221
- 222 The surface roughness of thermally cut edges subject to cyclic stress ranges, that include tension, shall not exceed 1,000 µin. (25 µm), where Surface Tex-223 224 ture, Surface Roughness, Waviness, and Lay (ASME B46.1) is the reference standard. 225 226
 - User Note: AWS C4.1 Sample 3 may be used to evaluate compliance with this requirement.
- 230 Reentrant corners at cuts, copes and weld access holes shall form a radius not 231 less than the prescribed radius in Table A-3.1. 232
- 233 For transverse butt joints in regions of tensile stress, weld tabs shall be used to 234 provide for cascading the weld termination outside the finished joint. End dams

235 shall not be used. Weld tabs shall be removed and the end of the weld finished 236 flush with the edge of the member. 237

238 Fillet welds subject to cyclic loading normal to the outstanding legs of angles 239 or on the outer edges of end plates shall have end returns around the corner for 240 a distance not less than two times the weld size; the end return distance shall 241 not exceed four times the weld size.

243 3.6. NONDESTRUCTIVE EXAMINATION REQUIREMENTS FOR FATIGUE 244 245

246 In the case of CJP groove welds, the maximum allowable stress range calcu-247 lated by Equation A-3-1 or A-3-1M applies only to welds that have been ultra-248 sonically or radiographically tested and meet the acceptance requirements of 249 Structural Welding Code-Steel, AWS D1.1/D1.1M, clause 8.12.2 or clause - OF THE AND A DE AND 250 8.13.2.

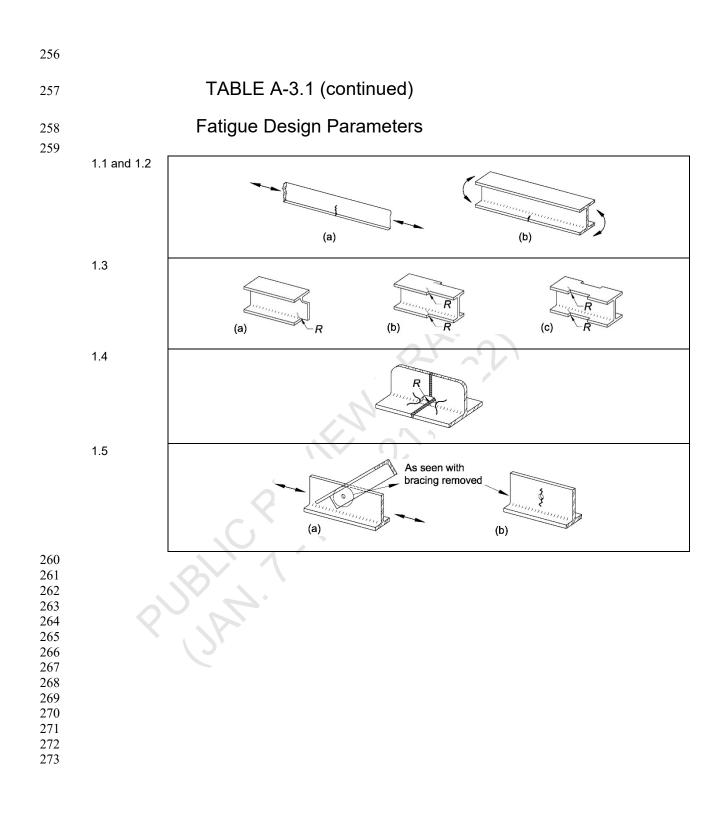
251

242

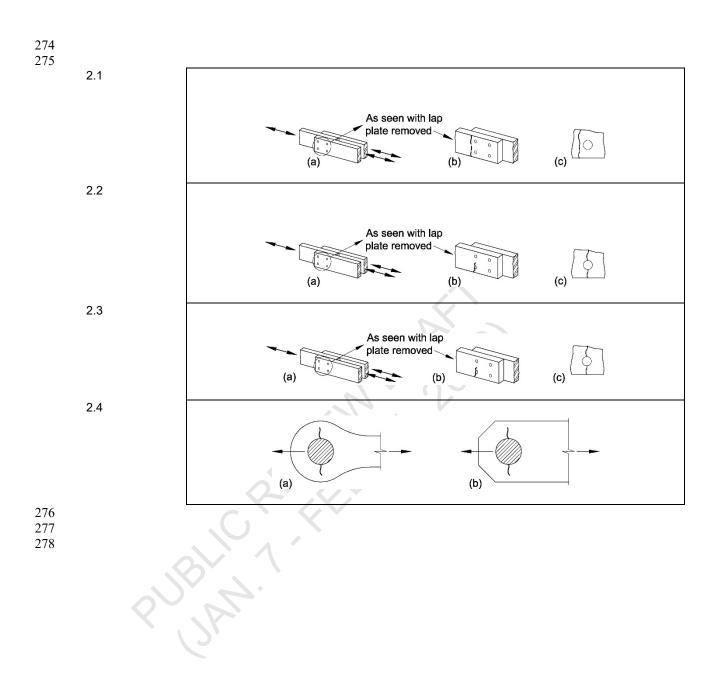
2	52

253

TABLE A-3.1 Fatigue Design Parameters

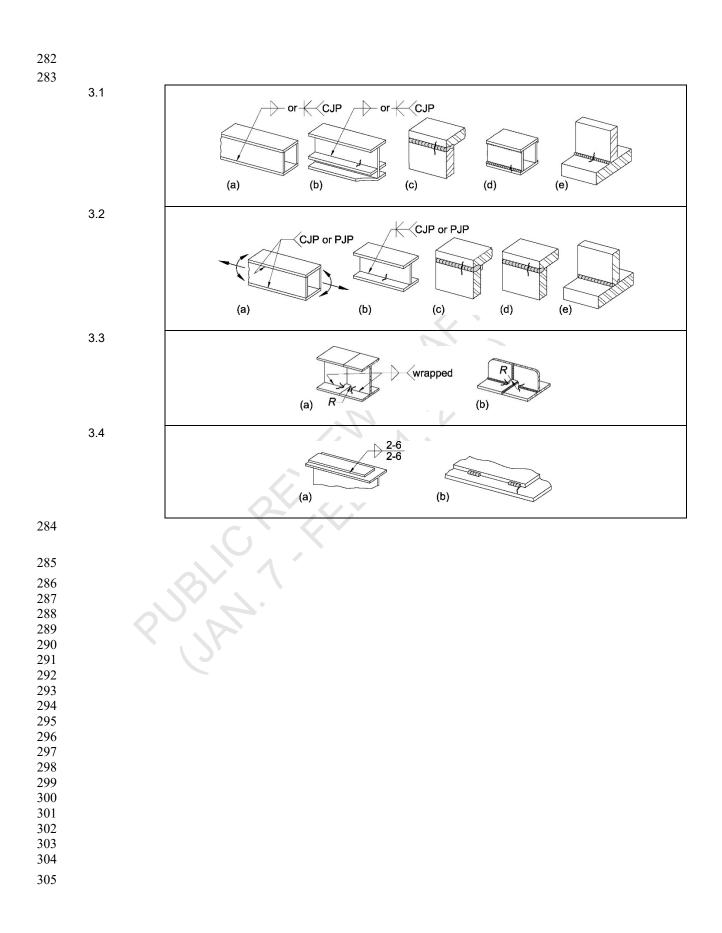

							
Description	Stress Category	Constant, C _f	Threshold, <i>F</i> ⊺H, ksi (MPa)	Potential Crack Initiation Point			
SECTION 1—PLA	IN MATERIA	L AWAY FRO	OM ANY WEL	DING			
1.1 Base metal, except non- coated weathering steel, with as-rolled or cleaned surfaces; flame-cut edges with surface roughness value of 1,000 μ in. (25 μ m) or less, but without reentrant corners	A	25	24 (165)	Away from all welds or struc- tural connec- tions			
1.2 Noncoated weathering steel base metal with asrolled or cleaned surfaces; flame-cut edges with surface roughness value of 1,000 μ in. (25 μ m) or less, but without reentrant corners	В	12	16 (110)	Away from all welds or struc- tural connec- tions			
1.3 Members with reentrant corners at copes, cuts, block-outs or other geomet- rical discontinuities, except weld access holes	A A		~	At any exter- nal edge or at hole perimeter			
$R \ge 1$ in. (25 mm), with the radius, R , formed by predrilling, subpunching and reaming water-jet cut- ting or thermally cutting and grinding to a bright metal surface	C	4.4	10 (69)				
$R \ge 3/8$ in. (10 mm) and the radius, R , formed by drilling punching, water-jet cutting, or thermal cutting; punched holes need not be reamed, and thermally cut surfaces need not be ground	E'	0.39	2.6 (18)				

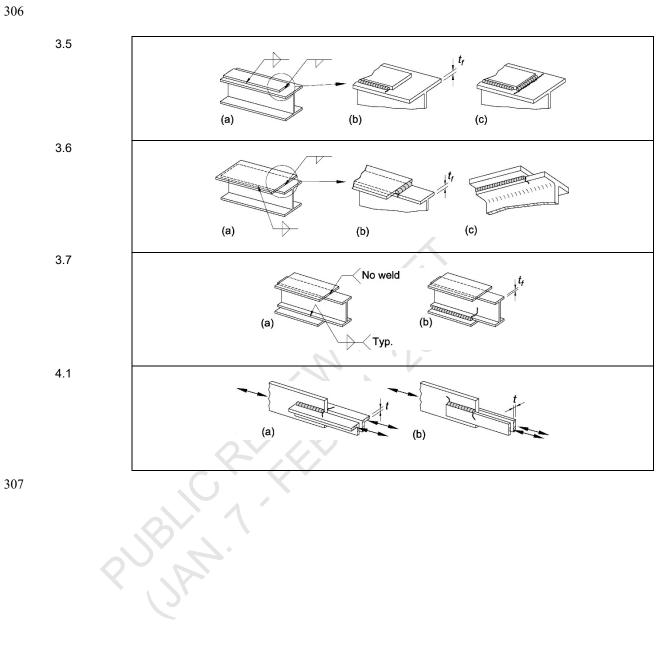
1.4 Rolled cross sections with weld access holes made to requirements of Section J1.6				At reentrant corner of weld access hole
Access hole $R \ge 1$ in. (25 mm) with radius, R , formed by predrilling, subpunching and reaming or thermal cutting and grinding to a bright metal surface	С	4.4	10 (69)	
Access hole $R \ge 3/8$ in. (10 mm) and the radius, R , need not be ground to a bright metal surface	E'	0.39	2.6 (18)	
1.5 Members with drilled or reamed holes where the holes			K	In net section originating at side of the hole
Contain pretensioned bolts	С	4.4	10 (69)	22)
Are open holes without bolts	D	2.2	7 (48)	5
SECTION 2-CONNECTED	MATERIAL	IN MECHANI		ENED JOINTS
2.1 Gross area of base metal in lap joints connected by high-strength bolts where the joints satisfy all require- ments for slip-critical con- nections ^[a] .	В	12	16 (110)	Through gross section not through the hole
2.2 Net area of base metal in lap joints connected by high-strength bolts where the joints satisfy all require- ments for pretensioned con- nections. ^[b]	В	12	16 (110)	In net section originating at side of hole
2.3 Net section of base metal in existing riveted joints.	D	2.2	7 (48)	In net section originating at side of hole
			4.5	In net section
2.4 Net section in base metal of eyebar or pin plate connections.	E	1.1	(31)	originating at side of hole


^{al}Slip-critical connections are required by the RCSC *Specification* for joints subject to the provisions of this appendix with reversal of the loading direction [see RCSC *Specification* Section 4.3(1)]], and permitted for other loading conditions (see RCSC *Specification* Section 4.3 Commentary). Holes may be prepared by any method permitted by this Specification.

^[b] Pretensioned connections are restricted by the RCSC *Specification* to cyclically loaded connections where there is no reversal of loading direction [see RCSC *Specification* Section 4.2(3)]. Holes may be prepared by any method permitted by this Specification but RCSC requires thermally cut holes to be approved by the engineer of record (see RCSC *Specification* Section 3.3).

APP 3-9


APP 3-10

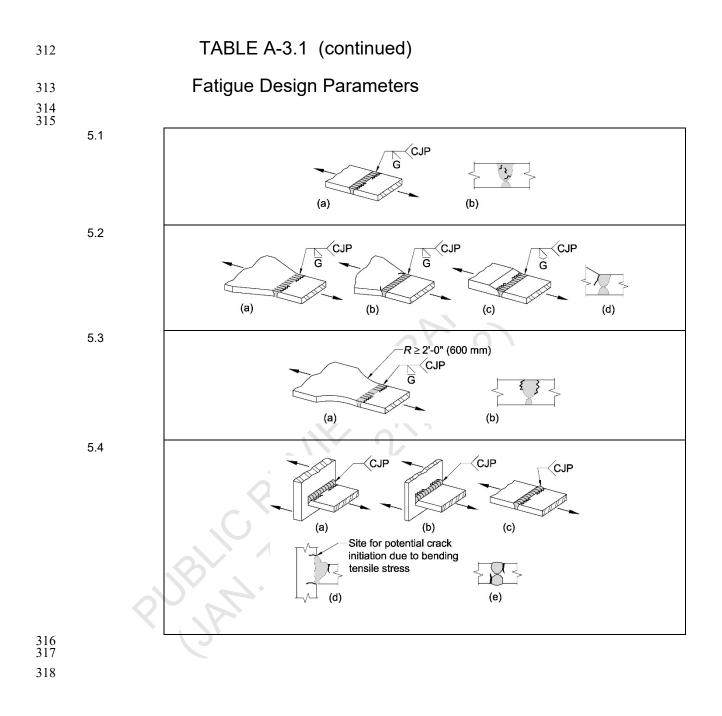

279 280	TABLE A-3.1 (continued)						
281							
	Description	Stress Cate- gory	Constant, C _f	Thresh- old, <i>F_{TH}</i> , ksi (MPa)	Potential Crack Initiation Point		
	SECTION 3—WELDED JO	INTS JOIN MEMBE		NENTS OF	BUILT-UP		
	3.1 Base metal and weld metal in members without attach- ments built up of plates or shapes connected by continu- ous longitudinal CJP groove welds, back gouged and welded from second side, or by continuous fillet welds	В	12	16 (110)	From surface or internal dis- continuities in weld		
	3.2 Base metal and weld metal in members without attach- ments built up of plates or shapes, connected by continu- ous longitudinal CJP groove welds with left-in-place continu- ous steel backing, or by contin- uous PJP groove welds	B'	6.1	12 (83)	From surface or internal dis- continuities in weld		
	3.3 Base metal at the ends of longitudinal welds that termi- nate at weld access holes in connected built-up members, as well as weld toes of fillet welds that wrap around ends of weld access holes Access hole $R \ge 1$ in. (25 mm)	D	2.2	7	From the weld termination into the web or flange		
	with radius, <i>R</i> , formed by predrilling, subpunching and reaming, or thermally cut and ground to bright metal surface			(48)			
	Access hole $R \ge 3/8$ in. (10 mm) and the radius, R , need not be ground to a bright metal surface	E'	0.39	2.6 (18)			
	3.4 Base metal at ends of longi- tudinal intermittent fillet weld segments	E	1.1	4.5 (31)	In connected material at start and stop locations of any weld		

	1	1		
3.5 Base metal at ends of par- tial length welded coverplates narrower than the flange having square or tapered ends, with or without welds across the ends				In flange at toe of end weld (if present) or in flange at termi- nation of longi- tudinal weld
$t_f \le 0.8$ in. (20 mm)	E	1.1	4.5 (31)	
t_f > 0.8 in. (20 mm) where t_f = thickness of member flange, in. (mm)	E′	0.39	2.6 (18)	
3.6 Base metal at ends of par- tial length welded coverplates or other attachments wider than the flange with welds across the ends $t_f \le 0.8$ in. (20 mm)	Е	1.1	4.5	In flange at toe of end weld or in flange at ter- mination of longitudinal weld or in edge of flange
$t_f > 0.8$ in. (20 mm)	E′	0.39	(31) 2.6 (18)	5.0.135
3.7 Base metal at ends of par- tial length welded coverplates wider than the flange without welds across the ends		CP.		In edge of flange at end of coverplate weld
$t_f \le 0.8$ in. (20 mm)	E'	0.39	2.6 (18)	
t_f >0.8 in. (20 mm) is not per- mitted	None	_	_	
SECTION 4—LONGITUDINAL FILLET WELDED END CONNECTIONS				
4.1 Base metal at junction of ax- ially loaded members with lon- gitudinally welded end connec- tions; welds are on each side of the axis of the member to bal- ance weld stresses				Initiating from end of any weld termina- tion extending into the base metal
<i>t</i> ≤ 0.5 in. (13 mm)	E	1.1	4.5 (31)	
<i>t</i> > 0.5 in. (13 mm)	E′	0.39	2.6 (18)	
where <i>t</i> = connected member thickness, as shown in Case 4.1 figure, in. (mm)			(10)	

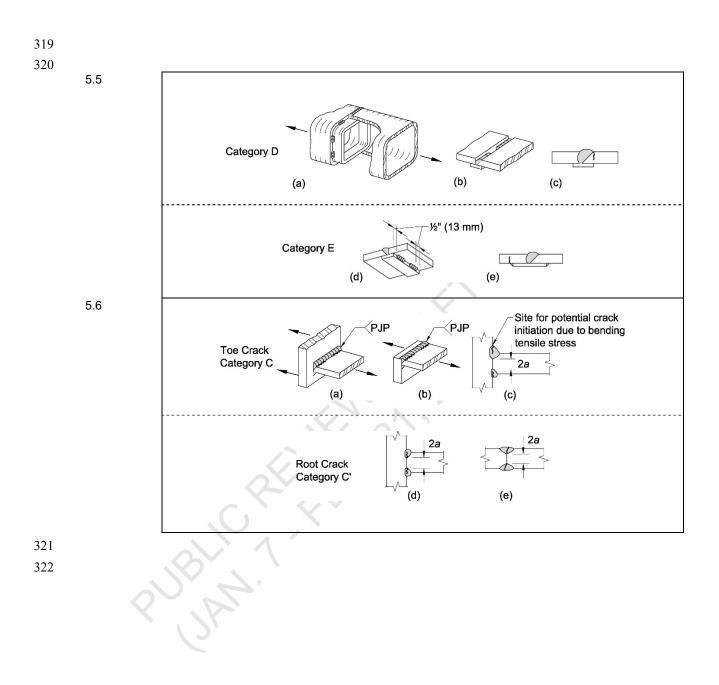
APP 3-13

APP 3-14

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION


308 TABLE A-3.1	(continued)
-----------------	-------------

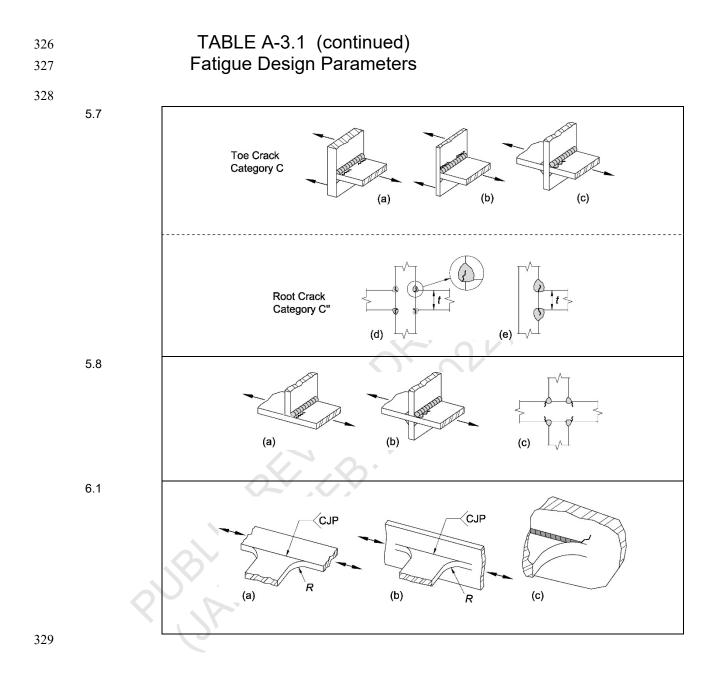
310


Fatigue Design Parameters

Description	Stress Category	Constant, <i>C</i> f	Threshold, <i>F_{TH}</i> , ksi (MPa)	Potential Crack Initiation Point
SECTION 5—WELDED JO	INTS TRANS	SVERSE TO	DIRECTION	OF STRESS
5.1 Weld metal and base metal in or adjacent to CJP groove welded splices in plate, rolled shapes, or built- up cross sections with no change in cross section with welds ground essentially par- allel to the direction of stress and inspected in accordance with Section 3.6	В	12	16 (110)	From internal discontinuities in weld metal or along the fusion bound- ary
5.2 Weld metal and base metal in or adjacent to CJP groove welded splices with welds ground essentially par- allel to the direction of stress at transitions in thickness or width made on a slope no greater than 1:2-1/2 and in- spected in accordance with Section 3.6		THE S	822	From internal discontinuities in metal or along the fusion boundary or at start of transition when $F_y \ge 90$ ksi (620 MPa)
<i>F_y</i> < 90 ksi (620 MPa)	В	12	16 (110)	
<i>F</i> _y ≥ 90 ksi (620 MPa)	B′	6.1	12 (83)	
5.3 Base metal and weld metal in or adjacent to CJP groove welded splices with welds ground essentially par- allel to the direction of stress at transitions in width made on a radius, <i>R</i> , of not less than 24 in. (600 mm) with the point of tangency at the end of the groove weld and in- spected in accordance with Section 3.6	В	12	16 (110)	From internal discontinuities in weld metal or along the fusion bound- ary
5.4 Weld metal and base metal in or adjacent to CJP groove welds in T- or corner- joints or splices, without tran- sitions in thickness or with transition in thickness having slopes no greater than 1:2- 1/2, when weld reinforcement is not removed, and is in- spected in accordance with Section 3.6	С	4.4	10 (69)	From weld ex- tending into base metal or into weld metal

5.5 Base metal and weld metal in or adjacent to trans- verse CJP groove welded butt splices with backing left in place Tack welds inside groove	D	2.2	7 (48)	From the toe of the groove weld or the toe of the weld attaching backing when applicable
Tack welds outside the groove and not closer than 1/2 in. (13 mm) to the edge of base metal	E	1.1	4.5 (31)	
5.6 Base metal and weld metal at transverse end con- nections of tension-loaded plate elements using PJP groove welds in butt, T- or corner-joints, with reinforcing or contouring fillets; F_{SR} shall be the smaller of the toe crack or root crack allowable stress range			RA	22
Crack initiating from weld toe	с	4.4	10 (69)	Initiating from weld toe ex- tending into base metal
Crack initiating from weld root	C'	See Eq. A-3-3 or A-3-3M	None	Initiating at weld root ex- tending into and through weld
PUBLA				

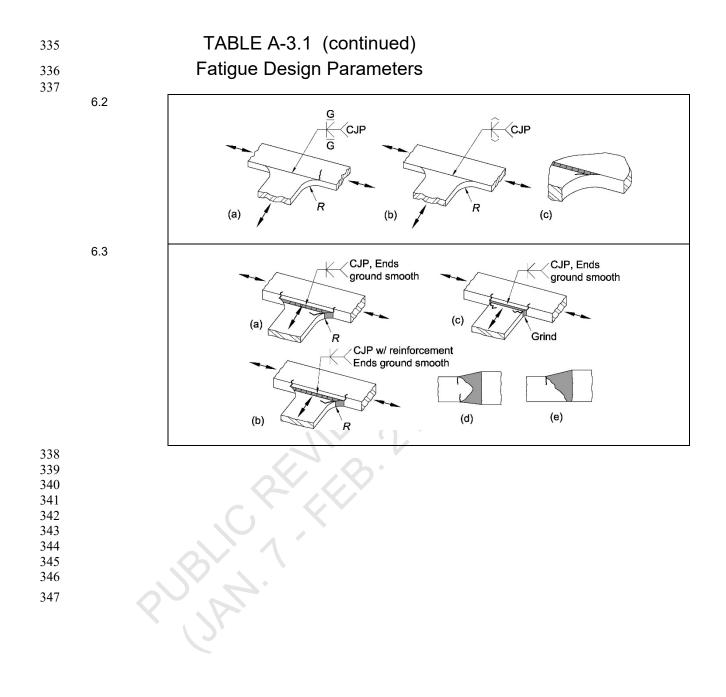
APP 3-18



324

TABLE A-3.1 (continued) Fatigue Design Parameters

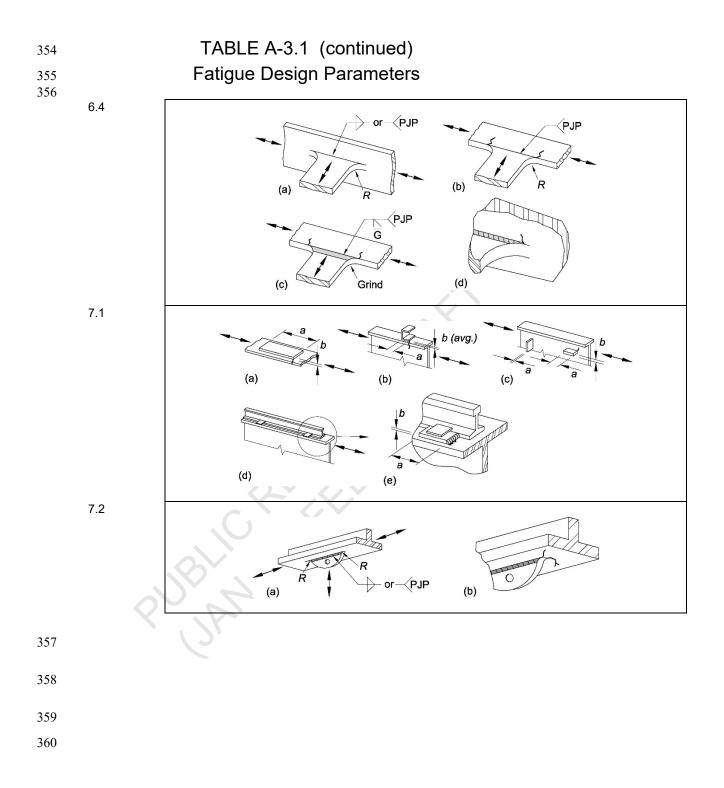
Description	Stress Category	Constant <i>C</i> f	Thresh- old <i>F_{TH}</i> , ksi (MPa)	Potential Crack Initiation Point
SECTION 5—WELDED JOII	NTS TRANS (cont		DIRECTION	OF STRESS
5.7 Base metal and weld metal at transverse end con- nections of tension-loaded plate elements using a pair of fillet welds on opposite sides of the plate; F_{SR} shall be the smaller of the weld toe crack or weld root crack allowable stress range			af	
Crack initiating from weld toe	С	4.4	10 (69)	Initiating from weld toe ex- tending into base metal
Crack initiating from weld root	5	See Eq. A-3-5 or A-3-5M	None	Initiating at weld root ex- tending into and through weld
5.8 Base metal of tension- loaded plate elements, and on built-up shapes and rolled beam webs or flanges at toe of transverse fillet welds adja- cent to welded transverse stiff- eners	C	4.4	10 (69)	From geomet- rical disconti- nuity at toe of fillet extending into base metal
SECTION 6—BASE ME	ETAL AT WE CONNEC		ISVERSE M	IEMBER


6.1 Base metal of equal or un- equal thickness at details at- tached by CJP groove welds subject to longitudinal loading only when the detail embodies a transition radius, <i>R</i> , with the weld termination ground smooth and inspected in ac- cordance with Section 3.6				Near point of tangency of ra- dius at edge of member
<i>R</i> ≥ 24 in. (600 mm)	В	12	16 (110)	
6 in. ≤ <i>R</i> < 24 in. (150 mm ≤ <i>R</i> < 600 mm)	С	4.4	10 (69)	<
2 in. ≤ <i>R</i> < 6 in. (50 mm ≤ <i>R</i> < 150 mm)	D	2.2	7 (48)	22
<i>R</i> < 2 in. (50 mm)	E	1.1	4.5 (31)	5
PUBLIC	25	B.		

		(continı า Param	•	
Description	Stress Cate- gory	Constant <i>C</i> _f	Thresh- old <i>F_{TH}</i> , ksi (MPa)	Potentia Crack Initiation P
SECTION 6—BASE ME COM		ELDED TRAN S (continued		IEMBER
6.2 Base metal at details of equal thickness attached by CJP groove welds, subject to transverse loading, with or without longitudinal loading, when the detail embodies a transition radius, R , with the weld termination ground smooth and inspected in accordance with Section 3.6		R	SP 2	522
(a) When weld reinforcement is removed	N			Near poin tangency o dius or in
<i>R</i> ≥ 24 in. (600 mm)	В	12	16 (110)	weld or at sion bound or membe attachmen
6 in. ≤ <i>R</i> < 24 in. (150 mm ≤ <i>R</i> < 600 mm)	с	4.4	10 (69)	
2 in. ≤ <i>R</i> < 6 in. (50 mm ≤ <i>R</i> < 150 mm)	D	2.2	7 (48)	
<i>R</i> < 2 in. (50 mm)	E	1.1	4.5 (31)	
(b) When weld reinforcement is not removed $R \ge 6$ in. (150 mm)	С	4.4	10 (69)	At toe of weld ei along edge member or
2 in. ≤ <i>R</i> < 6 in. (50 mm ≤ <i>R</i> < 150 mm)	D	2.2	7 (48)	attachmen
<i>R</i> < 2 in. (50 mm)	E	1.1	4.5 (31)	

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

 6.3 Base metal at details of unequal thickness attached by CJP groove welds, subject to transverse loading, with or without longitudinal loading, when the detail embodies a transition radius, <i>R</i>, with the weld termination ground smooth and in accordance with Section 3.6: (a) When weld reinforcement is 				
removed				
<i>R</i> > 2 in. (50 mm)	D	2.2	7 (48)	At toe of weld along edge of thinner mate- rial
<i>R</i> ≤ 2 in. (50 mm)	E	1.1	4.5 (31)	In weld termi- nation in small radius
(b) When reinforcement is not removed				SLL
Any radius	E		4.5 (31)	At toe of weld along edge of thinner mate- rial
PUBLIC	244			


348	TABLE	A-3.1 ((continu	ed)	
349	Fatigue Design Parameters				
	Description	Stress Cate- gory	Constant <i>C</i> f	Thresh- old <i>F_{TH}</i> , ksi (MPa)	Potential Crack Initiation Point
	SECTION 6—BASE ME	···	LDED TRAN 6 (continued		EMBER
	6.4 Base metal of equal or une- qual thickness, subject to longi- tudinal stress at transverse members, with or without trans- verse stress, attached by fillet or PJP groove welds parallel to direction of stress when the de- tail embodies a transition ra- dius, R , with weld termination ground smooth R > 2 in. (50 mm)	D	2.2	7 (48)	Initiating in base metal at the weld termi- nation or at the toe of the weld extending into the base metal
	<i>R</i> ≤ 2 in. (50 mm)	E	1.1	(48) 4.5 (31)	
	SECTION 7-BASE	METAL AT	SHORT AT	TACHMENT	-S ^a

PUBLIC

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

7.1 Base metal subject to longi- tudinal loading at details with welds parallel or transverse to the direction of stress, with or without transverse load on the detail, where the detail embod- ies no transition radius, <i>R</i> , and with detail length, <i>a</i> , in direction of stress and thickness of the attachment, <i>b</i> :				Initiating in base metal at the weld termi- nation or at the toe of the weld extending into the base metal
<i>a</i> < 2 in. (50 mm) for any thick- ness, <i>b</i>	С	4.4	10 (69)	
2 in. (50 mm) ≤ <i>a</i> ≤ 4 in. (100 mm) and a≤ 12b	D	2.2	7 (48)	
2 in. (50 mm) ≤ a ≤ 4 in. (100 mm) and a > 12b a> 4 in. (100 mm) and b≤ 0.8 in. (20 mm)	E	1.1	4.5 (31)	522)
<i>a</i> > 4 in. (100 mm) and <i>b</i> > 0.8 in. (20 mm)	E'	0.39	2.6 (18)	
7.2 Base metal subject to lon- gitudinal stress at details at- tached by fillet or PJP groove welds, with or without trans- verse load on detail, when the detail embodies a transition ra- dius, R , with weld termination ground smooth:				Initiating in base metal at the weld termi- nation, extend- ing into the base metal
<i>R</i> > 2 in. (50 mm)	D	2.2	7 (48)	
<i>R</i> ≤ 2 in. (50 mm)	E	1.1	4.5 (31)	

[a] "Attachment," as used herein, is defined as any steel detail welded to a member that causes a deviation in the stress flow in the member and, thus, reduces the fatigue resistance. The reduction is due to the presence of the attachment, not due to the loading on the attachment.

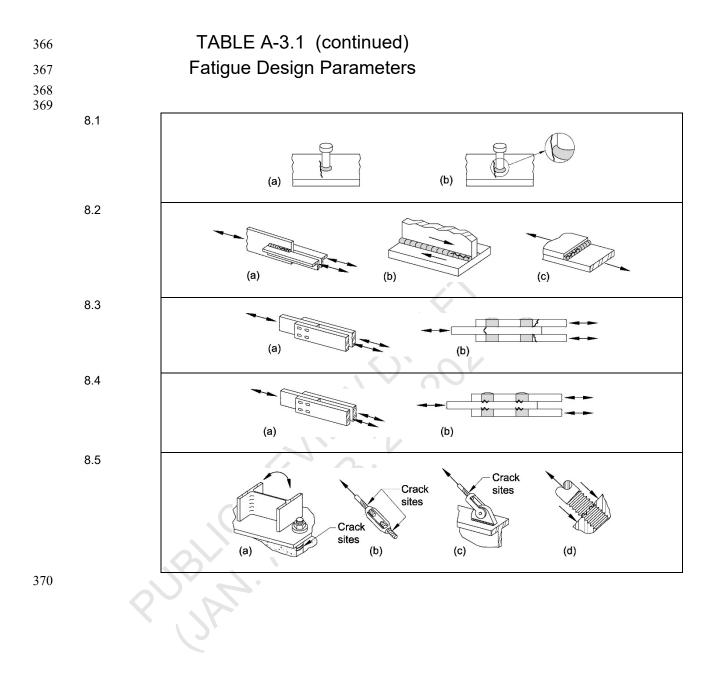


TABLE A-3.1 (continued) Fatigue Design Parameters

362
363

Description	Stress Cate- gory	Constant <i>C</i> f	Thresh- old <i>F_{TH}</i> , ksi (MPa)	Potential Crack Initiation Point
SECTI	ION 8-MIS	CELLANEOU	JS	
8.1 Base metal at steel headed stud anchors attached by fillet weld or automatic stud welding	С	4.4	10 (69)	At toe of weld in base metal
8.2 Shear on throat of any fillet weld, continuous or intermit- tent, longitudinal or transverse	F	See Eq. A-3-2 or A-3-2M	See Eq. A-3-2 or A-3-2M	Initiating at the root of the fillet weld, extend- ing into the weld
8.3 Base metal at plug or slot welds	E	1.1	4.5 (31)	Initiating in the base metal at the end of the plug or slot weld, extend- ing into the base metal
8.4 Shear on plug or slot welds	F	See Eq. A-3-2 or A-3-2M	See Eq. A-3-2 or A-3-2M	Initiating in the weld at the faying surface, extending into the weld
8.5 High-strength bolts, com- mon bolts, threaded anchor rods, and hanger rods, whether pretensioned in accordance with Table J3.1 or J3.1M, or snug-tightened with cut, ground or rolled threads; stress range on tensile stress area due to ap- plied cyclic load plus prying ac- tion, when applicable	G	0.39	7 (48)	Initiating at the root of the threads, ex- tending into the fastener

364

APPENDIX 4

STRUCTURAL DESIGN FOR FIRE CONDITIONS

5 This appendix provides criteria for the design and evaluation of structural steel components, systems, and frames for fire conditions. These criteria provide for the deter-8 mination of the heat input, thermal expansion, and degradation in mechanical prop-9 erties of materials at elevated temperatures that cause progressive decrease in strength 10 and stiffness of structural components and systems at elevated temperatures.

User Note: Throughout this chapter, the term "elevated temperatures" refers to temperatures due to unintended fire exposure only.

The appendix is organized as follows:

- 4.1. General Provisions
- 4.2. Structural Design for Fire Conditions by Analysis

4.3. Design by Qualification Testing

21 User Note: Appendix 4 incorporates provisions reproduced with permission from the 22 2018 International Building Code, ASCE/SEI/SFPE 29-05 Standard Calculation 23 Methods for Structural Fire Protection, Eurocode 3 Design of Steel Structures: Part 24 1.2: General Rules, Structural Fire Design, and Eurocode 4 Design of Composite Steel 25 and Concrete Structures: Part 1.2: General Rules, Structural Fire Design. See the 26 Commentary to Appendix 4 for a listing of the specific provisions reproduced with 27 permission from each of these sources.

28 **GENERAL PROVISIONS** 4.1.

29 30

31

34 35

36

37

38

39 40

41

42

43 44

45

46

47

49

1

2

3 4

6

7

11 12

13

14 15

16 17

18

19

20

The methods contained in this appendix provide regulatory evidence of com-

32 33 1. **Performance Objective**

> Structural components, members, and building frame systems shall be designed so as to maintain their load-bearing function during the design-basis fire and to satisfy other performance requirements specified for the building occupancy.

pliance in accordance with the design applications outlined in this section.

Deformation criteria shall be applied where the means of providing structural fire resistance, or the design criteria for fire barriers, requires evaluation of the deformation of the load-carrying structure.

Within the compartment of fire origin, forces and deformations from the design-basis fire shall not cause a breach of horizontal or vertical compartmentation.

- 48 **Design by Engineering Analysis** 2.
- 50 The analysis methods in Section 4.2 are permitted to be used to document the anticipated performance of steel framing when subjected to design-basis 51

fire scenarios. Methods in Section 4.2 provide evidence of compliance with
 performance objectives established in Section 4.1.1.

The analysis methods in Section 4.2 are permitted to be used to demonstrate an equivalency for an alternative material or method, as permitted by the applicable building code (ABC).

Structural design for fire conditions using Appendix 4.2 shall be performed using the load and resistance factor design (LRFD) method in accordance with the provisions of Section B3.1, unless a design based on advanced analysis is performed in accordance with Section 4.2.4c. Ambient resistance factors shall be used with the LRFD method.

65 **3. Design by Qualification Testing**

55

56

57

58 59

60

61

62

63

64

66 67

68

69

71 72

73

74

87

88

90 91

92

93

94

The qualification testing methods in Section 4.3 are permitted to be used to document the fire resistance of steel framing subject to the standardized fire testing protocols required by the ABC.

70 4. Load Combinations and Required Strength

in accordance with ASCE/SEI 7.

In the absence of ABC provisions for design under fire exposures, the required strength of the structure and its elements shall be determined from the gravity load combination as follows:

$$(0.9 \text{ or } 1.2) D + A_T + 0.5L + 0.2S \tag{A-4-1}$$

where

79	A_T = nominal forces and deformations due to the design-basis fire de-
80	fined in Section 4.2.1
81	D = nominal dead load
82	L = nominal occupancy live load
83	S = nominal snow load
84	
85	User Note: ASCE/SEI 7, Section 2.5, contains Equation A-4-1 for extraor-
86	dinary events, which includes fire. Live load reduction is .usually considered

89 4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS

It is permitted to design structural members, components, and building frames for elevated temperatures in accordance with the requirements of this section.

95 **1. Design-Basis Fire** 96

97 A design-basis fire shall be identified to describe the heating and cooling 98 conditions for the structure. These heating and cooling conditions shall re-99 late to the fuel commodities and compartment characteristics present in the 100 assumed fire area. The fuel load density based on the occupancy of the space 101 shall be considered when determining the total fuel load. Heating and cooling conditions shall be specified either in terms of a heat flux or temperature 102 103 of the upper gas layer created by the fire. The variation of the heating and 104 cooling conditions with time shall be determined for the duration of the fire. 105

106The analysis methods in Section 4.2 shall be used in accordance with the107provisions for alternative materials, designs, and methods as permitted by108the ABC. When the analysis methods in Section 4.2 are used to demonstrate109equivalency to hourly ratings based on qualification testing in Section 4.3,110the design-basis fire shall be permitted to be determined in accordance with111ASTM E119 or UL 263.

1a. Localized Fire

Where the heat release rate from the fire is insufficient to cause flashover, a localized fire exposure shall be assumed. In such cases, the fuel composition, arrangement of the fuel array, and floor area occupied by the fuel shall be used to determine the radiant heat flux from the flame and smoke plume to the structure.

1b. Post-Flashover Compartment Fires

Where the heat release rate from the fire is sufficient to cause flashover, a post-flashover compartment fire shall be assumed. The determination of the temperature versus time profile resulting from the fire shall include fuel load, ventilation characteristics of the space (natural and mechanical), compartment dimensions, and thermal characteristics of the compartment boundary.

The fire duration in a particular area shall be determined from the total combustible mass, or fuel load in the space. In the case of either a localized fire or a post-flashover compartment fire, the fire duration shall be determined as the total combustible mass divided by the mass loss rate.

135 1c. Exterior Fires

The exposure effects of the exterior structure to flames projecting from windows or other wall openings as a result of a post-flashover compartment fire shall be addressed along with the radiation from the interior fire through the opening. The shape and length of the flame projection shall be used along with the distance between the flame and the exterior steelwork to determine the heat flux to the steel. The method identified in Section 4.2.1b shall be used for describing the characteristics of the interior compartment fire.

145 1d. Active Fire-Protection Systems

The effects of active fire-protection systems shall be addressed when describing the design-basis fire.

Where automatic smoke and heat vents are installed in nonsprinklered spaces, the resulting smoke temperature shall be determined from calculation.

154 2. Temperatures in Structural Systems under Fire Conditions

156Temperatures within structural members, components, and frames due to the157heating conditions posed by the design-basis fire shall be determined by a158heat transfer analysis.

160	3.	Material Properties at Elevated Temperatures
161 162 163 164 165 166		The effects of elevated temperatures on the physical and mechanical prop- erties of materials shall be considered in the analysis and design of structural members, components and systems. Any rational method that establishes material properties at elevated temperatures that is based on test data is per- mitted, including the methods defined in Sections 4.2.3a and 4.2.3b.
167 168	3 a.	Thermal Elongation
169 170		The coefficients of thermal expansion shall be taken as follows:
171 172 173		(a) For structural and reinforcing steels: For calculations at temperatures above 150°F (66°C), the coefficient of thermal expansion is $7.8 \times 10^{-6/\circ}$ F ($1.4 \times 10^{-5/\circ}$ C).
174 175 176 177 178 179 180 181		 (b) For normal weight concrete: For calculations at temperatures above 150°F (66°C), the coefficient of thermal expansion is 10 × 10⁻⁶/°F (1.8 × 10⁻⁵/°C). (c) For lightweight concrete: For calculations at temperatures above 150°F (66°C), the coefficient of thermal expansion is 4.4 × 10⁻⁶/°F (7.9 × 10⁻⁶/°C).
182 183 184 185	3b.	Mechanical Properties of Structural Steel, Hot-Rolled Reinforcing Steel, and Concrete at Elevated Temperatures
186 187 188 189 190 191 192		The uniaxial engineering stress-strain-temperature relationship for structural steel, hot rolled reinforcing steel, and concrete shall be determined using this section. This applies only to structural and reinforcing steels with a specified minimum yield strength, F_{y} , equal to 65 ksi (450 MPa) or less, and to concrete with a specified compressive strength, f'_c , equal to 8 ksi (55 MPa) or less.
192		(a) Structural and Hot Rolled Reinforcing Steel
194 195 196 197 198		Table A-4.2.1 provides retention factors, k_E , k_y , and k_p , for steel which are expressed as the ratio of the mechanical property at elevated tem- perature with respect to the property at ambient, assumed to be 68°F (20°C). It is permitted to interpolate between these values. The proper- ties at elevated temperature, <i>T</i> , are defined as follows:
199 200 201 202 203 204 205		E(T) is the modulus of elasticity of steel at elevated temperature, ksi (MPa), which is calculated as the retention factor, k_E , times the ambient property as specified in Table A-4.2.1. $G(T)$ is the shear mod- ulus of elasticity of steel at elevated temperature, ksi (MPa), which is calculated as the retention factor, $\underline{k_E}$, times the ambient property as specified in Table A-4.2.1.
206 207 208 209 210		$F_y(T)$ is the specified minimum yield stress of steel at elevated temperature, ksi (MPa), which is calculated as the retention factor, k_y , times the ambient property as specified in Table A-4.2.1.

 $F_p(T)$ is the proportional limit at elevated temperature, which is calculated as the retention factor, k_p , times the yield strength as specified in Table A-4.2.1.

 $F_u(T)$ is the specified minimum tensile strength at elevated temperature, which is equal to $F_y(T)$ for temperatures greater than 750°F (400°C). For temperatures less than or equal to 750°F (400°C), F_u may be used in place of $F_u(T)$.

The engineering stress at elevated temperature, F(T), at each strain range shall be determined as follows:

222 (a) When in the elastic range $[\varepsilon(T) \le \varepsilon_p(T)]$

$$F(T) = E(T) \varepsilon(T) \tag{A-4-2}$$

(b) When in the nonlinear range $[\varepsilon_p(T) < \varepsilon(T) < \varepsilon_y(T)]$

$$F(T) = F_p(T) - c + \frac{b}{a}\sqrt{a^2 - \left[\varepsilon_y(T) - \varepsilon(T)\right]^2}$$
(A-4-3)

227 (c) When in the plastic range $[\varepsilon_y(T) \le \varepsilon_u(T)]$

$$F(T) = F_y(T) \tag{A-4-4}$$

where

- $\epsilon(T)$ = the engineering strain at elevated temperature, in./in. (mm/mm
 - $\varepsilon_p(T)$ = the engineering strain at the proportional limit at elevated temperature, in./in. (mm/mm) = $F_p(T) / E(T)$
 - $\varepsilon_y(T)$ = the engineering yield strain at elevated temperature = 0.02 in./in. (mm/mm)
 - $\varepsilon_u(T)$ = the ultimate strain at elevated temperature
 - = 0.15 in./in. (mm/mm)

$$a^{2} = a^{2} = \left[\varepsilon_{y}(T) - \varepsilon_{p}(T)\right] \left[\varepsilon_{y}(T) - \varepsilon_{p}(T) + \frac{c}{E(T)}\right] \quad (A-4-5)$$

$$b^{2} = E(T) \Big[\varepsilon_{y}(T) - \varepsilon_{p}(T) \Big] c + c^{2}$$
(A-4-6)

$$c = \frac{\left[F_{y}(T) - F_{p}(T)\right]^{2}}{E(T)\left[\varepsilon_{y}(T) - \varepsilon_{p}(T)\right] - 2\left[F_{y}(T) - F_{p}(T)\right]}$$
(A-4-7)

User Note: The equation for the plastic range conservatively neglects the strain-hardening portion, but strain-hardening is permitted to be included. The plateau of the plastic range does not exceed the ultimate strain, $\varepsilon_u(T)$.

User Note: This section applies to structural steel materials specified in Section A3.1 and to hot-rolled reinforcing steel with a specified minimum yield strength, F_y , equal to 65 ksi or less. This includes ASTM A615/A615M Gr. 60 (420) and ASTM A706/A706M Gr. 60 (420) steel reinforcement.

(b) Concrete

255	Table A-4.2.2 provides retention factors, k_c and k_{Ec} , for concrete which
256	are expressed as the ratio of the mechanical property at elevated temper-
257	ature with respect to the property at ambient, assumed to be 68° F (20°C).
258	It is permitted to interpolate between these values. For lightweight con-
259	crete, values of $\varepsilon_{cu}(T)$ shall be obtained from tests. The properties at ele-
260	vated temperature, T, are defined as follows:
261	
262	$E_c(T)$ = modulus of elasticity of concrete at elevated
263	temperature, ksi (MPa), which is calculated as the retention fac-
264	tor, k_{Ec} , times the ambient property as specified in Table A-4.2.2.
265	$f'_c(T)$ = the specified compressive strength of concrete at elevated
266	temperature, ksi (MPa), which is calculated as the retention fac-
267	tor, k_c , times the ambient property as specified in Table A-4.2.2.
268	
269	$\varepsilon_{cu}(T)$ = the concrete strain corresponding to $f'_c(T)$ at elevated
270	temperature, in./in. (m/m), which is specified in Table A-4.2.2.
271	
272	The uniaxial stress-strain-temperature relationship for concrete in com-
273	pression is permitted to be calculated as follows:
274	
275	$F_{c}(T) = f_{c}'(T) \left\{ \frac{3 \left[\frac{\varepsilon_{c}(T)}{\varepsilon_{cu}(T)} \right]}{2 + \left[\frac{\varepsilon_{c}(T)}{\varepsilon_{cu}(T)} \right]^{3}} \right\} $ (A-4-8)
274	
276	
277	where $F_c(T)$ and $\varepsilon_c(T)$ are the concrete compressive stress and strain, re-
278	spectively, at elevated temperature.
279	
280	User Note: The tensile strength of concrete at elevated temperature can
281	be taken as zero, or not more than 10% of the compressive strength at the
282	corresponding temperature.
283	
284	(c) Strengths of Bolts at Elevated Temperatures
285	
286	Table A-4.2.3 provides the retention factor (k_b) for high-strength bolts
287	which is expressed as the ratio of the mechanical property at elevated
288	temperature with respect to the property at ambient, which is assumed to
289	be 68°F (20°C). The properties at elevated temperature, T , are defined
290	as follows:
291	
292	$F_{nl}(T)$ = nominal tensile strength of the bolt, ksi (MPa), which is calcu-
292	lated as the retention factor, k_b , times the ambient property as spec-
293	ified in Table A-4.2.3.
295	mou iii 1001071 7.2.3.
295	$F_{nv}(T)$ = nominal shear strength of the bolt, ksi (MPa), which is calcu-
290	lated as the retention factor, k_b , times the ambient property as spec-
297	ified in Table A-4.2.3.
298 299	meu III Taule A-4.2.3.
277	

TABLE A-4.2.1 Properties of Steel at Elevated Temperatures						
Steel Temperature, °F (°C)	$k_E = E(T)/E$ $= G(T)/G$	$k_{p}=F_{p}(T)/F_{y}$	$k_y = F_y(T)/F_y$			
68 (20)	1.00	1.00	1.00			
200 (93)	1.00	1.00	1.00			
400 (200)	0.90	0.80	1.00			
600 (320)	0.78	0.58	1.00			
750 (400)	0.70	0.42	1.00			
800 (430)	0.67	0.40	0.94			
1000 (540)	0.49	0.29	0.66			
1200 (650)	0.22	0.13	0.35			
1400 (760)	0.11	0.06	0.16			
1600 (870)	0.07	0.04	0.07			
1800 (980)	0.05	0.03	0.04			
2000 (1100)	0.02	0.01	0.02			
2200 (1200)	0.00	0.00	0.00			

TABLE A-4.2.2								
Proper	Properties of Concrete at Elevated Temperatures							
Concrete Temperature, °F (°C)	$k_c = f_c'(T)/f_c'$		1× 1	ε _{cu} (<i>T</i>), in./in. (mm/mm)				
F (C)	Normal Weight Concrete	Lightweight Concrete	$k_{Ec} = E_c(T)/E_c$	Normal Weight Concrete				
68 (20)	1.00	1.00	1.00	0.0025				
200 (93)	0.95	1.00	0.93	0.0034				
400 (200)	0.90	1.00	0.75	0.0046				
550 (290)	0.86	1.00	0.61	0.0058				
600 (320)	0.83	0.98	0.57	0.0062				
800 (430)	0.71	0.85	0.38	0.0080				
1000 (540)	0.54	0.71	0.20	0.0106				
1200 (650)	0.38	0.58	0.092	0.0132				
1400 (760)	0.21	0.45	0.073	0.0143				
1600 (870)	0.10	0.31	0.055	0.0149				
1800 (980)	0.05	• 0.18	0.036	0.0150				
2000 (1100)	0.01	0.05	0.018	0.0150				
2200 (1200)	0.00	0.00	0.000	0.0000				

Γ	TAR				
	TABLE A-4.2.3				
	Properties of Group 120 and Group 150 High-				
	Strength Bolts at Elevated Temperatures				
	Bolt Temperature,	$k_b = F_{nt}(T) / F_{nt}$			
	°F (°C)	$= F_{nv}(T) / F_{nv}$			
	68 (20)	1.00			
	200 (93)	0.97			
	300 (150)	0.95			
	400 (200)	0.93			
	600 (320)	0.88			
	800 (430)	0.71 0.59			
-	900 (480) 1000 (540)	0.39			
	1200 (650)	0.42			
-	1400 (760)	0.08			
-	1600 (870)	0.00			
	1800 (980)	0.01			
	2000 (1100)	0.00			
4.	Structural Design Requiren	nents			
4a.	General Requirements				
	The structural frame and foundation shall be capable of providing the strength and deformation capacity to withstand, as a system, the structural actions developed during the fire within the prescribed limits of deformation. The structural system shall be designed to sustain local damage with the structural system as a whole remaining stable. Frame stability and required strength shall be determined in accordance with the requirements of Section C1.				
	Continuous load paths shall be provided to transfer all forces from the exposed region to the final point of resistance.				
	The size and spacing of vent holes in concrete-filled composite members shall be evaluated such that no applicable strength limit states in the steel elements are exceeded due to the build-up of steam pressure. Any rational method that considers heat transfer through the cross section, water content in concrete, fire protection, and the allowable pressure build up in the mem- ber is permitted for calculating the size and spacing of vent holes.				
	User Note: Section 4.3.2b(a) concrete-filled columns.	provides a possible vent hole configuration for			
4b.	Strength Requirements and	Deformation Limits			
		l system to these requirements shall be demon- nematical model of the structure based on prin-			

Conformance of the structural system to these requirements shall be demonstrated by constructing a mathematical model of the structure based on principles of structural mechanics and evaluating this model for the internal forces and deformations in the members of the structure developed by the temperatures from the design-basis fire.

338 Individual members shall have the design strength necessary to resist the 339 shears, axial forces and moments determined in accordance with these pro-340 visions.

342 Structural components shall be designed and detailed to resist the imposed 343 loading and deformation demands during a design-basis fire as required to 344 meet the performance objectives stated in Section 4.1.1. Where the means of providing fire resistance requires the evaluation of deformation criteria, 345 the deformation of the structural system, or members thereof, under the de-346 sign-basis fire shall not exceed the prescribed limits. 347

349 User Note: Typical simple shear connections may need additional design enhancements for ductility and resistance to large compression and tensile 350 forces that may develop during the design-basis fire exposure. A fire expo-351 352 sure will not only affect the magnitude of member end reactions, but may 353 also change the limit state to one different from the controlling mode at am-354 bient temperature.

356 It shall be permitted to include membrane action of composite floor slabs for fire resistance if the design provides for the effects of increased connection tensile forces and redistributed gravity load demands on the adjacent fram-358 ing supports.

Design by Advanced Methods of Analysis 361 4c.

341

348

355

357

359

360

362 363

364 365

366

367

372

383

388

Design by advanced methods of analysis is permitted for the design of all steel building structures for fire conditions. The design-basis fire exposure shall be that determined in Section 4.2.1. The analysis shall include both a thermal response and the mechanical response to the design-basis fire.

368 The thermal response shall produce a temperature field in each structural element as a result of the design-basis fire and shall incorporate temperature-369 370 dependent thermal properties of the structural elements and fire-resistive 371 materials, as per Section 4.2.2.

373 The mechanical response shall include the forces and deformations in the 374 structural system due to the thermal response calculated from the design-375 basis fire. The mechanical response shall take into account explicitly the 376 deterioration in strength and stiffness with increasing temperature, the 377 effects of thermal expansions, inelastic behavior and load redistribution, large deformations, time-dependent effects such as creep, and uncertainties 378 resulting from variability in material properties at elevated temperature. 379 Support and restraint conditions (forces, moments, and boundary conditions) 380 381 shall represent the behavior of the structure during a design-basis fire. 382 Material properties shall be defined as per Section 4.2.3.

384 The resulting analysis shall address all relevant limit states, such as 385 excessive deflections, connection ruptures, and global and local buckling, 386 and shall demonstrate an adequate level of safety as required by the authority 387 having jurisdiction.

389 4d. **Design by Simple Methods of Analysis** 390

391 The methods of analysis in this section are permitted to be used for the evaluation of the performance of structural components and frames at elevated 392 393 temperatures during exposure to a design-basis fire.

204	
394 395	When evaluating structural components, the stiffnesses and boundary con-
395 396	ditions applicable at ambient temperatures are permitted to be assumed to
397	remain unchanged throughout the fire exposure for the calculation of re-
398	quired strengths.
399	qui cu su cirguis.
400	For evaluating the performance of structural frames during exposure to a
401	design-basis fire, the required strengths are also permitted to be determined
402	through consideration of reduced stiffness at elevated temperatures, bound-
403	ary conditions, and thermal deformations.
404	
405	User Note: Determining the required strength assuming ambient tempera-
406	tures throughout the fire exposure is generally applicable to members in reg-
407	ular gravity frames. Determining the required strength accounting for ele-
408	vated temperatures may be more appropriate for irregular structural frames.
409	
410	The design strength shall be determined as in Section B3.1. The nominal
411	strength, R_n , shall be calculated using material properties, as provided in
412	Section 4.2.3b, at the temperature developed by the design-basis fire and as
413	stipulated in Sections 4.2.4d(a) through (h).
414	
415	The simple method is only applicable to members with nonslender and/or
416	compact sections.
417	It is permitted to model the thermal response of steel and composite mem-
418	bers using a lumped heat capacity analysis with heat input as determined by
419	the design-basis fire defined in Section 4.2.1, using the temperature equal to
420	the maximum steel temperature. For composite beams, the maximum steel
421	temperature shall be assigned to the bottom flange and a temperature gradi-
422	ent shall be applied to incorporate thermally induced moments as stipulated
423	in Section 4.2.4d(f).
424	
425	For steel temperatures less than or equal to 400°F (200°C), the member and
426	connection design strengths are permitted to be determined without consid-
427	eration of temperature effects on the nominal strengths.
428 429	
430	User Note: Lumped heat capacity analysis assumes uniform temperature
431	over the section and length of the member, which is generally a reasonable
432	assumption for many structural members exposed to post-flashover fires.
433	Consideration should be given to the use of the uniform temperature assump-
434	tion as it may not always be applicable or conservative.
435	ton as it may not always be appreable of conservative.
436	The simple methods of analysis are not intended for temperatures below
437	400°F (200°C). The nominal strengths for temperatures below 400°F
438	$(200^{\circ}C)$ should be calculated without any consideration of temperature ef-
439	fects on material properties or member behavior.
440	
441	(a) Design for Tension
442	
443	The nominal strength for tension shall be determined using the provi-
444	sions of Chapter D, with steel properties as stipulated in Section
445	4.2.3b(a) and assuming a uniform temperature over the cross section
446	using the temperature equal to the maximum steel temperature.
447	
448	
449	

(b) Design for Compression

450

451 452

453

454

455

456

457

458

459

460 461

462

463 464

465

466

467

468 469

470

471 472

473

474 475 476

477 478

494 495

496

For nonslender-element columns, the nominal strength for flexural buckling of compression members shall be determined using the provisions of Chapter E with steel properties as stipulated in Section 4.2.3b(a). Equation A-4-9 shall be used in lieu of Equations E3-2 and E3-3 to calculate the nominal compressive strength for flexural buckling:

$$F_n(T) = \begin{bmatrix} 0.42^{\sqrt{\frac{F_y(T)}{F_c(T)}}} \end{bmatrix} F_y(T)$$
(A-4-9)

where $F_{\nu}(T)$ is the yield stress at elevated temperature and $F_{e}(T)$ is the critical elastic buckling stress calculated from Equation E3-4 with the elastic modulus, E(T), at elevated temperature. $F_{\nu}(T)$ and E(T) are obtained using coefficients from Table A-4.2.1.

The strength of gravity only columns that do not provide resistance to lateral loads is permitted to be increased by the rotational restraints from cooler columns in the stories above and below the story exposed to the fire. This increased strength applies to fires on only one floor and should not be used for multiple story fires. It is permitted to account for the increase in design strength by reducing the column slenderness, (L_c/r) , used to calculate $F_e(T)$ in Equation A-4-9 to $L_c(T)/r$ as follows:

$$\frac{L_c(T)}{r} = \left[1 - \frac{T - 32}{n(3,600)}\right] \frac{L_c}{r} - \frac{35}{n(3,600)}(T - 32) \ge 0 \quad (^{\circ}\text{F}) \quad (\text{A-4-10})$$

$$\frac{L_c(T)}{r} = \left[1 - \frac{T}{n(2,000)}\right] \frac{L_c}{r} - \frac{35T}{n(2,000)} \ge 0 \quad (^{\circ}\text{C}) \tag{A-4-10M}$$

where

479	
480	K = 1.0 for gravity only columns
481	$L_c = KL =$ effective length of member, in. (mm)
482	L = laterally unbraced length of the member, in. (mm)
483	$T = \text{steel temperature, }^{\circ}F$ (°C)
484	n = 1 for columns with cooler columns both above and below
485	n = 2 for columns with cooler columns either above or below
486	only
487	r = radius of gyration, in. (mm)
488	
489	User Note: The design equations for compression predict flexural
490	buckling capacities of wide flange rolled shapes, but do not consider
491	local buckling and torsional buckling. If applicable, these additional
492	limit states must be considered with an alternative method. For most fire
493	conditions, uniform heating and temperatures govern the design for
10.1	

compression. When uniform heating is not a reasonable assumption, alternative methods must be used to account for the effects of nonuniform heating and resulting thermal gradients on the design strength of

compression members, as the simple method assumes a uniform temperature distribution..

(c) Design for Compression in Concrete-Filled Composite Columns

 For concrete-filled composite columns, the nominal strength for compression shall be determined using the provisions of Section I2.2 with steel and concrete properties as stipulated in Section 4.2.3b. Equation A-4-11 shall be used in lieu of Equations I2-2 and I2-3 to calculate the nominal compressive strength for flexural buckling:

$$P_{n}(T) = \left\{ 0.54^{\left[\frac{P_{no}(T)}{P_{e}(T)}\right]^{0.3}} \right\} P_{no}(T)$$
(A-4-11)

where $P_{no}(T)$ is calculated at elevated temperature using Equations I2-9, I2-10, and I2-11. $P_e(T)$ is calculated at elevated temperature using Equation I2-5. $EI_{eff}(T)$ is calculated at elevated temperature using Equations I2-12 and I2-13. $F_y(T)$, $f'_c(T)$, $E_s(T)$, and $E_c(T)$ are obtained using coefficients from Tables A-4.2.1 and A-4.2.2.

(d) Design for Compression in Concrete-Filled Composite Plate Shear Walls

For concrete-filled composite plate shear walls, the nominal strength for compression shall be determined using the provisions of Section I2.3 with steel and concrete properties as stipulated in Section A-4.2.3b and Equation A-4-12 used in lieu of Equations I2-2 and I2-3 to calculate the nominal compressive strength for flexural buckling:

$$P_n(T) = \left\{ 0.32^{\left[\frac{P_{no}(T)}{P_e(T)}\right]^{0.3}} \right\} P_{no}(T)$$
(A-4-12)

where $P_{no}(T)$ is calculated at elevated temperature using Equation I2-15. $P_e(T)$ is calculated at elevated temperature using Equation I2-5. $EI_{eff}(T)$ is calculated at elevated temperatures using Equation I1-1. $F_y(T)$, $f'_c(T_c)$, $E_s(T)$, and $E_c(T_c)$ are obtained using coefficients from Tables A-4.2.1 and A-4.2.2.

User Note: For composite members, the steel temperature is determined using heat transfer equations with heat input corresponding to the design-basis fire. The temperature distribution in concrete infill can be calculated using one- or two-dimensional heat transfer equations. The regions of concrete infill will have varying temperatures and mechanical properties. Concrete contribution to axial strength and effective stiffness can therefore be calculated by discretizing the cross-section into smaller elements (with each concrete element considered to have a uniform temperature) and summing up the contribution of individual elements.

(e) Design for Flexure

For steel beams, the temperature over the depth of the member shall be taken as the temperature calculated for the bottom flange. (1) The nominal strength for flexure shall be determined using the provisions of Chapter F with steel properties as stipulated in Section 4.2.3b(b). Equations A-4-13 through A-4-19 shall be used in lieu of Equations F2-2 through F2-6 to calculate the nominal flexural strength for lateral-torsional buckling of doubly symmetric compact rolled wide-flange shapes bent about their major axis: When $L_b \leq L_r(T)$

558
$$M_{n}(T) = C_{b} \left\{ F_{L}(T) S_{x} + \left[M_{p}(T) - F_{L}(T) S_{x} \right] \left[1 - \frac{L_{b}}{L_{r}(T)} \right]^{c_{x}} \right\} \le M_{p}(T)$$

560 (2) When
$$L_b > L_r(T)$$

$$M_n(T) = F_{cr}(T)S_x \le M_p(T) \tag{A-4-14}$$

where

563
$$F_{cr}(T) = \frac{C_b \pi^2 E(T)}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$
(A-4-15)

564
$$L_r(T) = 1.95r_{ts} \frac{E(T)}{F_L(T)} \sqrt{\frac{Jc}{S_x h_o}} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76 \left[\frac{F_L(T)}{E(T)}\right]^2}$$

566
$$F_L(T) = F_y(k_p - 0.3k_y)$$
 (A-4-17)

$$M_p(T) = F_y(T)Z_x \tag{A-4-18}$$

$$c_x = 0.53 + \frac{T}{450} \le 3.0$$
 where *T* is in °F (A-4-19)

$$c_x = 0.6 + \frac{T}{250} \le 3.0$$
 where *T* is in °C (A-4-19M)

and

T = elevated temperature of steel due to unintended fire exposure, °F (°C)

The material properties at elevated temperatures, E(T) and $F_y(T)$, and the retention factors, k_p and k_y , are calculated in accordance with Table A-4.2.1, and other terms are as defined in Chapter F.

User Note: $F_L(T)$ represents the initial yield stress, which assumes a residual stress of $0.3F_y$. Alternatively, 10 ksi (69 MPa) may be used in place of $0.3F_y$ for calculation of $F_L(T)$.

User Note: The equations for lateral-torsional buckling do not consider local buckling. If applicable, the effects of local buckling must be considered with an alternative method.

(f) Design for Flexure in Composite Beams

For composite beams, the calculated bottom flange temperature shall be taken as constant between the bottom flange and mid-depth of the web and shall decrease linearly by no more than 25% from the mid-depth of the web to the top flange of the beam.

The nominal strength of a composite flexural member shall be determined using the provisions of Chapter I, with reduced yield stresses in the steel as determined from Table A-4.2.1. Steel properties will vary as the temperature along the depth of section changes.

Alternatively, the nominal flexural strength of a composite beam, $M_n(T)$, is permitted to be calculated using the bottom flange temperature, T, as follows:

$$M_n(T) = k_{cb}M_n \tag{A-4-20}$$

where

 M_n = nominal flexural strength at ambient temperature calculated in accordance with provisions of Chapter I, kip-in. (N-mm)

 k_{cb} = retention factor depending on bottom flange temperature, *T*, as given in Table A-4.2.4

TABLE A-4.2.4 Retention Factor for Flexure in Composite Beams				
Bottom Flange Temperature, °F (°C)	$k_{cb} = M_n(T) / M_n$			
68 (20)	1.00			
300 (150)	0.98			
600 (320)	0.95			
800 (430)	0.89			
1000 (540)	0.71			
1200 (650)	0.49			
1400 (760)	0.26			
1600 (870)	0.12			
1800 (980)	0.05			
2000 (1100)	0.00			

(g) Design for Shear

The nominal strength for shear yielding shall be determined in accordance with the provisions of Chapter G, with steel properties as stipulated in Section 4.2.3b(a) and assuming a uniform temperature over the cross section.

User Note: Shear yielding equations do not consider shear buckling or tension field action. If applicable, these limit states must be considered with an alternative method.

626

627

628 629

630

631

633 634

635

636

637

638

639

640

641

642 643

644

645

646 647

648 649 650

651

652

653

654

655

656

657

658 659

660

661

662 663

664

665 666

667 668

669 670

671 672

621 622

(h) Design for Combined Forces and Torsion

The nominal strength for combinations of axial force and flexure about one or both axes, with or without torsion, shall be in accordance with the provisions of Chapter H with the design axial and flexural strengths as stipulated in Sections 4.2.4d(a),(b), (e), and (g). Nominal strength for torsion shall be determined in accordance with the provisions of Chapter H, with the steel properties as stipulated in Section 4.2.3b(a), assuming uniform temperature over the cross section.

632 4e. Design by Critical Temperature Method

The critical temperature of a structural member is the temperature at which the demand on the member exceeds its capacity under fire conditions. The temperature of a loaded structural member exposed to the design-basis fire defined in Section 4.2.1 shall not exceed the critical temperature as calculated in this section. The evaluation methods in this section are permitted to be used in lieu of Section 4.2.4d for tension members, continuously braced beams not supporting concrete slabs, or compression members that are assumed to be simply supported and develop a uniform temperature over the cross section throughout the fire exposure.

The use of the critical temperature method shall be limited to steel members with wide-flange rolled shapes that have nonslender elements per Section B4.

(a) Design for Tensile Yielding

The critical temperature of a tension member is permitted to be calculated as follows:

$$T_{cr} = 816 - 306 \ln \left(\frac{R_u}{R_n}\right) \text{ in } ^\circ \text{F}$$
 (A-4-21)

$$T_{cr} = 435 - 170 \ln \left(\frac{R_u}{R_n}\right) \text{in}^\circ \text{C}$$
 (A-4-21M)

where

- R_n = nominal yielding strength at ambient temperature determined in accordance with the provisions in Section D2, kips (N)
- R_u = required tensile strength at elevated temperature, determined using the load combination in Equation A-4-1 and greater than $0.01R_n$, kips (N)
- T_{cr} = critical temperature in °F (°C)

User Note: Tensile rupture in the net section is not considered in this critical temperature calculation. It can be considered using an alternative method.

(b) Design for Compression

The critical temperature of a compression member for flexural buckling is permitted to be calculated as follows:

$$T_{cr} = 1580 - 0.814 \left(\frac{L_c}{r}\right) - 1300 \left(\frac{P_u}{P_n}\right) \text{ in °F}$$
 (A-4-22)

674

717

$$T_{cr} = 858 - 0.455 \left(\frac{L_c}{r}\right) - 722 \left(\frac{P_u}{P_n}\right) \text{ in °C}$$
 (A-4-22M)

		(r) (r_n)
675		
676		where
677		L_c = effective length of member, in. (mm)
678		P_n = nominal compressive strength at ambient temperature deter-
679		mined in accordance with the provisions in Section E3, kips (N)
680		P_u = required compressive strength at elevated temperature, deter-
681		mined using the load combination in Equation A-4-1, kips (N)
682		r = radius of gyration, in. (mm)
683		
684		(a) Design for Flowurd Violding
		(c) Design for Flexural Yielding
685		
686		The critical temperature of a continuously braced beam not supporting
687		a concrete slab is permitted to be calculated as follows:
688		
689		$T_{cr} = 816 - 306 \ln \left(\frac{M_u}{M_n}\right) \text{ in °F} $ (A-4-23)
690		
691		$T_{cr} = 435 - 170 \ln\left(\frac{M_u}{M_n}\right) \text{ in }^{\circ}\text{C} $ (A-4-23M)
692		
693		where
694		M_n = nominal flexural strength due to yielding at ambient temperature
695		
		determined in accordance with the provisions in Section F2.1,
696		kip-in. (N-mm)
697		M_u = required flexural strength at elevated temperature, determined
698		using the load combination in Equation A-4-1, kip-in. and
699		greater than $0.01M_n$ (N-mm)
700		T_{cr} = critical temperature in °F (°C)
701		
702		User Note: Lateral-torsional buckling of beams is not considered in
703		this critical temperature calculation. It can be considered using an alter-
704		native method.
704		hutve method.
705	12	DESIGN DV OUATIEICATION TESTING
705	4.3.	DESIGN BY QUALIFICATION TESTING
706		
707	1.	Qualification Standards
708		-
709		Structural members and components in steel buildings shall be qualified for
710		the rating period in conformance with ASTM E119 or UL 263. Demonstra-
711		tion of compliance with these requirements using the procedures specified
712		for steel construction in Section 5 of Standard Calculation Methods for
713		Structural Fire Protection (ASCE/SEI/SFPE 29) is permitted. It is also per-
714		mitted to demonstrate equivalency to such standard fire resistance ratings
715		using the advanced analysis methods in Section 4.2 in combination with the
716		fire exposure specified in ASTM E119 or UL 263 as the design-basis fire.
717		

718User Note: There are other standard fire exposures which are more severe719than that prescribed in ASTM E119, for example the hydrocarbon pool fire720scenario defined in ASTM E1529 (UL 1709). Fire resistance ratings

721	developed on the basis of ASTM E119 are not directly substitutable for such
722	more demanding conditions.
723	
724	The generic steel assemblies described in Table A-4.3.1 shall be deemed to
725	have the fire resistance ratings prescribed therein.
726	
727	
728	

PUBLICA. FEB. 24. 2022

Table A-4.3.1 Minimum Fire Protection and Fire Resistance Rat- ings of Steel Assemblies ^[e]							
Assembly	ltem Number	Fire Protection Material Used	Minimum Thickness of Insulat ing Material for Fire-Resistance Times, in. (mm)				
			4 hrs	3 hrs	2 hrs	1 hr	
1. Steel col- umns and all of primary trusses	1-1.1	Carbonate, lightweight and sand-lightweight aggregate concrete, members 6 in. \times 6 in. (150 mm x 150 mm) or greater (not including sand- stone, granite and siliceous gravel). ^[a]	2-1/2 (63)	2 (50)	1-1/2 (38)	1 (25)	
	1-1.2	Carbonate, lightweight and sand-lightweight aggregate concrete, members 8 in. × 8 in. (200 mm x 200 mm) or greater (not including sand- stone, granite and siliceous gravel). ^[a]	2 (50)	1-1/2 (38)	1 (25)	1 (25)	
	1-1.3	Carbonate, lightweight and sand-lightweight aggregate concrete, members 12 in. × 12 in. (300 mm x 300 mm) or greater (not including sand- stone, granite and siliceous gravel). ^[a]	1-1/2 (38)	1 (25)	1 (25)	1 (25)	
	1-1.4	Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 6 in. × 6 in. (150 mm x 150 mm) or greater. ^[a]	3 (75)	2 (50)	1-1/2 (38)	1 (25)	
	1-1.5	Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 8 in.× 8 in. (200 mm x 200 mm) or greater. ^[a]	2-1/2 (63)	2 (50)	1 (25)	1 (25)	
JB	1-1.6	Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 12 in.× 12 in (300 mm x 300 mm) or greater. ^[a]	2 (50)	1 (25)	1 (25)	1 (25)	
	1-2.1	Clay or shale brick with brick and mortar fill. ^[a]	3-3/4 (94)	_	_	2-1/4 (56)	
	1-4.1	Cement plaster over metal lath wire tied to 3/4 in. (19 mm) cold-rolled vertical channels with 0.049 in. (1.2 mm) (No. 18 B.W. gage) wire ties spaced 3 to 6 in. (75 to 150 mm) on center. Plaster mixed 1:2.5 by volume, ce- ment to sand.	-	_	2-1/2 ^[b] (63) ^[b]	7/8 (22)	

-	-	Table A-4.3.1 Protection and Fir iteel Assemblies ^[e]				at-
Assembly	ltem Number	Fire Protection Material Used	Minimu lating sista	Minimum Thickness of Insu- lating Material for Fire-Re- sistance Times, in. (mm)		
1. Steel col- umns and all of primary trusses	1-5.1	Vermiculite concrete, 1:4 mix by volume over paperbacked wire fabric lath wrapped di- rectly around column with ad- ditional 2×2 in. 0.065 / 0.065 in. (No. 16/16 B.W. gage) (50 x 50 mm 1.7 / 1.7 mm) wire fabric placed 3/4 in. (19 mm) from outer concrete surface. Wire fabric tied with 0.049 in. (1.2 mm) (No. 18 B.W. gage) wire spaced 6 in. (150 mm) on center for inner layer and 2 in. (50 mm) on center for outer layer.	2 (50)	<u>3 hrs</u>	<u>2 hrs</u>	<u>1 hr</u>
	1-6.1	Perlite or vermiculite gypsum plaster over metal lath wrapped around column and furred 1-1/4 in. (31 mm) from column flanges. Sheets lapped at ends and tied at 6 in. (150 mm) intervals with 0.049 in. (1.2 mm) (No. 18 B.W. gage) tie wire. Plaster pushed through to flanges.	1-1/2 (38)	1 (25)	_	_
	1-6.2	Perlite or vermiculite gypsum plaster over self-furring metal lath wrapped directly around column, lapped 1 in. (25 mm) and tied at 6 in. (150 mm) in- tervals with 0.049 in. (1.2 mm) (No. 18 B.W. gage) wire.	1-3/4 (44)	1-3/8 (34)	1 (25)	_
9.JB	1-6.3	Perlite or vermiculite gypsum plaster on metal lath applied to 3/4 in. (19 mm) cold-rolled channels spaced 24 in. (600 mm) apart vertically and wrapped flatwise around col- umn.	1-1/2 (38)	-	-	_

Assembly	ltem Number	teel Assemblies ^[e] Fire Protection Material Used	Minimu lating sista	um Thick Material nce Time	ness of for Fire es, in. (m	-Re- im)
1. Steel col- umns and all of primary trusses	1-6.4	Perlite or vermiculite gypsum plaster over two layers of 1/2 in. (13 mm) plain full-length gypsum lath applied tight to column flanges. Lath wrapped with 1 in. (25 mm) hexagonal mesh of 0.035 in. (0.89 mm) (No. 20 gage) wire and tied with doubled 0.049- in (1.2-mm-) diameter (No. 18 B.W. gage) wire ties spaced 23 in. (580 mm) on center. For three-coat work, the plaster mix for the second coat shall not exceed 100 pounds (450 kg) of gypsum to 2.5 ft ³ (0.071 m ³) of aggre- gate for the 3-hour system.	4 hrs 2-1/2 (63)	3 hrs 2 (50)	2 hrs -	<u>1 hr</u>
B	1-6.5	Perlite or vermiculite gypsum plaster over one layer of 1/2 in. (13 mm) plain full-length gypsum lath applied tight to column flanges. Lath tied with doubled 0.049 in. (1.2 mm) (No. 18 B.W. gage) wire ties spaced 23 in. (580 mm) on center and scratch coat wrapped with 1 in. (25 mm) hexagonal mesh 0.035 in. (0.89 mm) (No. 20 B.W. gage) wire fabric. For three- coat work, the plaster mix for the second coat shall not ex- ceed 100 pounds (450 kg) of gypsum to 2.5 ft ³ (0.071 m ³) of aggregate.	Ŷ	2 (50)	_	

Table A-4.3.1 Minimum Fire Protection and Fire Resistance Rat- ings of Steel Assemblies[e] (continued)					
ltem Number	Fire Protection Material Used	lating sista	Material	for Fire	-Re-
1-7.1	Multiple layers of 1/2 in. (13 mm) gypsum wallboard ^[c] adhesively ^[d] secured to column flanges and successive layers. Wallboard applied without horizontal joints. Corner edges of each layer staggered. Wallboard layer below outer layer secured to column with doubled 0.049 in. (1.2 mm) (No. 18 B.W. gage) steel wire ties spaced 15 in. (380 mm) on center. Exposed corners taped and treated.			2 (50)	1 (25)
1-7.2	mm) Type X gypsum wall- board. ^[c] First and second layer held in place by 1/8 in. dia. by 1-3/8 in. long (3 mm dia. by 35 mm long) ring shank nails with 5/16 in. (8 mm) dia. heads spaced 24 in. (600 mm) on center at cor- ners. Middle layer also se- cured with metal straps at mid-height and 18 in. (450 mm) from each end, and by metal corner bead at each corner held by the metal straps. Third layer attached to corner bead with 1 in. (25 mm) long gypsum wallboard screws spaced 12 in. (300	20		(47)	
	ings of Item Number	Item NumberFire Protection Material Used1-7.1Fire Protection Material Used1-7.1Multiple layers of 1/2 in. (13 mm) gypsum wallboard ^[c] ad- hesively ^[d] secured to column flanges and successive lay- ers. Wallboard applied with- out horizontal joints. Corner edges of each layer stag- gered. Wallboard layer below outer layer secured to col- umn with doubled 0.049 in. (1.2 mm) (No. 18 B.W. gage) steel wire ties spaced 15 in. (380 mm) on center. Ex- posed corners taped and treated.1-7.2Three layers of 5/8 in. (16 mm) Type X gypsum wall- board. ^[c] First and second layer held in place by 1/8 in. dia. by 35 mm long) ring shank nails with 5/16 in. (8 mm) dia. heads spaced 24 in. (600 mm) on center at cor- ners. Middle layer also se- cured with metal straps at mid-height and 18 in. (450 mm) from each end, and by metal corner bead at each corner held by the metal straps. Third layer attached to corner bead with 1 in. (25	Trice Protection and Fire Respondence of Steel Assemblies[e] (continue of Assemblies[e] (continue of Assemblies[e] (contendence of Assemblies[e] (contenden	Trice Protection and Fire Resistant ings of Steel Assemblies[e] (continued) Item Number Fire Protection Material Used Minimum Thick lating Material sistance Time 1-7.1 Multiple layers of 1/2 in. (13 mm) gypsum wallboard ^[6] adhesively ^[d] secured to column flanges and successive layers. Wallboard applied without horizontal joints. Corner edges of each layer staggered. Wallboard layer below outer layer secured to column with doubled 0.049 in. (1.2 mm) (No. 18 B.W. gage) steel wire ties spaced 15 in. (380 mm) on center. Exposed corners taped and treated. – – 1-7.2 Three layers of 5/8 in. (16 mm) Type X gypsum wallboard. ^[6] First and second layer held in place by 1/8 in. dia. by 1-3/8 in. long (3 mm dia. by 35 mm long) ring shank nails with 5/16 in. (8 mm) dia. heads spaced 24 in. (600 mm) on center at corners. Middle layer also secured with metal straps at mid-height and 18 in. (450 mm) from each end, and by metal corner bead at each corner held by the metal straps. Third layer attached to corner bead with 1 in. (25	Three Protection and Fire Resistance Times of Icontinued) Item Number Fire Protection Material Used Minimum Thickness of Iating Material for Fire-sistance Times, in. (modeling and successive lay-ers. Wallboard applied without horizontal joints. Corner edges of each layer stag-gered. Wallboard layer below outer layer secured to column with doubled 0.049 in. (1.2 mm) (No. 18 B.W. gage) steel wire ties spaced 15 in. (380 mm) on center. Exposed corners taped and treated. 1-7.2 Three layers of 5/8 in. (16 mm) Type X gypsum wallboard. ^[6] First and second layer held in place by 1/8 in. dia. by 1-3/8 in. long (3 mm dia. by 35 mm long) ring shank nails with 5/16 in. (8 mm) dia. heads spaced 24 in. (600 mm) on center at corners. Middle layer also secured with metal straps at mid-height and 18 in. (450 mm) from each end, and by metal corner bead at each corner held by the metal straps. Third layer attached to corner bead with 1 in. (25)

|--|

		Table A-4.3.1	
Minimu	m Fire	Protection and Fir	re Resistance Rat-
in	gs of S	teel Assemblies ^[e]	(continued)
			Minimum Thickness of Insu-

	lánun	Fine Ducto stice Motorial		Im Thick		
Assembly	ltem Number	Fire Protection Material Used		Material nce Time		
	Number	Osed	4 hrs	3 hrs	2 hrs	1 hr
1. Steel col- umns and all of primary trusses	1-7.3	Three layers of 5/8 in. (16 mm) Type X gypsum wall- board, ^[c] each layer screw at- tached to 1-5/8 in. (41 mm) steel studs, 0.018 in. thick (0.46 mm) (No. 25 carbon sheet steel gage) at each corner of column. Middle layer also secured with 0.049 in. (1.2 mm) (No. 18 B.W. gage) double-strand steel wire ties, 24 in. (600 mm) on center. Screws are No. 6 by 1 in. (25 mm) spaced 24 in. (600 mm) on center for inner layer, No. 6 by 1-5/8 in. (41 mm) spaced 12 in. (300 mm) on center for middle layer and No. 8 by 2-1/4 in. (56 mm) spaced 12 in. (300 mm) on center for outer layer.		1-7/8 (47)	_	-
PUB						

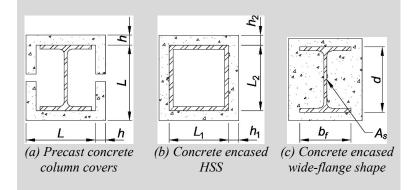
Table A-4.3.1						
	-	Protection and Fi				Rat-
Assembly	Igs Of a Item Number	Steel Assemblies ^{[e} Fire Protection Material Used	Minim	um Thicl terial for	ness of	sistance
			4 hrs	3 hrs	2 hrs	1 hr
 Steel col- umns and all of primary trusses 2. Webs or 	1-9.1	Minimum W8×35 wide flange steel column (w/d ≥ 0.75) with each web cavity filled even with the flange tip with normal weight carbonate or siliceous aggregate con- crete, 3,000 psi minimum compressive strength with 145 pcf \pm 3 pcf unit weight (21 MPa minimum compressive strength with 2300 kg/m ³ \pm 50 kg/m ³ unit weight). Rein- force the concrete in each web cavity with minimum No. 4 (13 mm) deformed reinforc- ing bar installed vertically and centered in the cavity, and secured to the column web with minimum No. 2 (6 mm) horizontal deformed reinforc- ing bar welded to the web every 18 in. (450 mm) on center vertically. As an alter- native to the No. 4 (13 mm) rebar, 3/4 in. diameter by 75 mm long) headed studs, spaced at 12 in. (300 mm) on center vertically, shall be welded on each side of the web midway between the col- umn flanges. Carbonate, lightweight and		1-1/2	_	See Note [f]
2. Webs or flanges of steel beams and girders	2.1-1	Carbonate, lightweight and sand-lightweight aggregate concrete (not including sand- stone, granite and siliceous gravel) with 3 in. (75 mm) or finer metal mesh placed 1 in. (25 mm) from the finished sur- face anchored to the top flange and providing not less than 0.025 in ² of steel area per ft (53 mm ² /m) in each direc- tion.	(50)	1-1/2 (38)	1 (25)	1 (25)

Assembly	ltem Number	Fire Protection Material Used	ing Mat	terial for Times,	ness of Ir Fire-Resis in. (mm)	
2. Webs or flanges of steel beams and girders	2-1.2	Siliceous aggregate concrete and concrete excluded in Item 2-1.1 with 3 in. (75 mm) or finer metal mesh placed 1 in. (25 mm) from the finished surface anchored to the top flange and providing not less than 0.025 in. ² of steel area per ft (53 mm ² /m) in each di- rection.	4 hrs 2-1/2 (63)	3 hrs 2 (50)	2 hrs 1-1/2 (38)	1 hr 1 (25)
	2-2.1	Cement plaster on metal lath attached to 3/4 in. (19 mm) cold-rolled channels with 0.04 in. (1.2 mm) (No. 18 B.W. gage) wire ties spaced 3 in. to 6 in. (75 mm to 150 mm) on center. Plaster mixed 1:2.5 by volume, cement to sand.	A.O.	2	2-1/2 ^b (63) ^b	7/8
	2-3.1	Vermiculite gypsum plaster on a metal lath cage, wire tied to 0.165 in. (4.2 mm) di- ameter (No. 8 B.W. gage) steel wire hangers wrapped around beam and spaced 16 in. (400 mm) on center. Metal lath ties spaced approxi- mately 5 in. (125 mm) on center at cage sides and bot- tom.	Ŷ	7/8 (22)	_	_

Table A-4.3.1 Minimum Fire Protection and Fire Resistance Ratings of Steel Assemblies^[e] (continued)

		(Minimu	um Thickr	ess of Ins	ulating
Assembly	Item	Fire Protection Material Used	Materia	l for Fire-l	Resistance	e Times,
Assembly	Number	The Protection Material Osed			mm)	
0.14/1	0.4.4	T (5/0) (40) T)/	4 hrs	3 hrs	2 hrs	1 hr
2. Webs or	2-4.1	Two layers of 5/8 in. (16 mm) Type X gyp- sum wallboard ^[c] are attached to U-shaped	-	-	1-1/4	-
flanges of steel beams		brackets spaced 24 in. (600 mm) on cen-			(33)	
and girders		ter. 0.018 in. (0.46 mm) thick (No. 25 car-				
and griders		bon sheet steel gage) 1-5/8 in. deep by 1				
		in. (41 mm deep by 25 mm) galvanized				
		steel runner channels are first installed				
		parallel to and on each side of the top				
		beam flange to provide a 1/2 in. (13 mm)				
		clearance to the flange. The channel run-				
		ners are attached to steel deck or con-	,			
		crete floor construction with approved fas-				
		teners spaced 12 in. (300 mm) on center.				
		U-shaped brackets are formed from mem- bers identical to the channel runners. At	γ			
		the bent portion of the U-shaped bracket,				
		the flanges of the channel are cut out so				
		that 1-5/8 in. (41 mm) deep corner chan-				
		nels can be inserted without attachment				
		parallel to each side of the lower flange.				
		As an alternative, 0.021 in. (0.53 mm)				
		thick (No. 24 carbon sheet steel gage) 1				
		in. \times 2 in. (25 mm x 50 mm) runner and				
		corner angles shall be used in lieu of				
		channels, and the web cutouts in the U-				
		shaped brackets shall not be required.				
		Each angle is attached to the bracket with 1/2-in. (13 mm)long No. 8 self-drilling				
	. ()	screws. The vertical legs of the U-shaped				
		bracket are attached to the runners with				
		one 1/2 in. (13 mm) long No. 8 self-drilling				
		screw. The completed steel framing pro-				
		vides a 2-1/8 in. (53 mm) and 1-1/2 in. (38				
	\sim	mm) space between the inner layer of				
\circ		wallboard and the sides and bottom of the				
X		steel beam, respectively. The inner layer				
		of wallboard is attached to the top runners				
		and bottom corner channels or corner an- gles with 1-1/4 inlong (31 mm long) No.				
		6 self-drilling screws spaced 16 in. (400				
		mm) on center. The outer layer of wall-				
		board is applied with 1-3/4 in. (44 mm)				
		long No. 6 self-drilling screws spaced 8 in.				
		(200 mm) on center. The bottom corners				
		are reinforced with metal corner beads.				

Assembly	ltem Number	Fire Protection Material Used	ing Mate	m Thickn erial for F Times, in	ire-Resis	
			4 hrs	3 hrs	2 hrs	1 hr
		Three layers of 5/8 in. (16 mm) Type X gypsum wallboard ^[c] at- tached to a steel suspension sys- tem as described immediately above utilizing the 0.018 in. (0.46 mm) thick (No. 25 carbon sheet steel gage) 1 in. \times 2 in. (25 mm x 50 mm) lower corner angles. The framing is located so that a 2-1/8 in. (53 mm) and 2 in. (50 mm) space is provided between the in- ner layer of wallboard and the sides and bottom of the beam, re- spectively. The first two layers of wallboard are attached as de- scribed immediately above. A layer of 0.035 in. (0.89 mm) thick (No. 20 B.W. gage) 1 in. (25 mm) hexagonal galvanized wire mesh is applied under the soffit of the middle layer and up the sides ap- proximately 2 in. (50 mm). The mesh is held in position with the No. 6 1-5/8-in. (41 mm)long screws installed in the vertical leg of the bottom corner angles. The outer layer of wallboard is at- tached with No. 6 2-1/4 in. (56 mm) long screws spaced 8 in. (200 mm) on center. One screw is also installed at the mid-depth of the bracket in each layer. Bottom corners are finished as described above.		1-7/8 (47)		
 [c] For all of the thickness and identical to the surface is cov [d] An approved [e] Generic fire-i shall be accep [f] Additional inst 	construction v core type is p at specified fo ered with not adhesive qua resistance rat oted as if here	rial is not required on the exposed o	for venee m wallboar a layer are veneer pla PRIETARY	rd, provide reinforced aster. * in the lis	ed attachr d, and the sting) in G	nent is entire GA 600


752	2.	Structural Steel Assemblies
753		
754		The provisions of this section contain procedures by which the standard fire-
755 756		resistance ratings of structural steel assemblies are established by calcula- tions. Use of these provisions is permitted in place of and/or as a supplement
750		to published fire resistive assemblies based on ASTM E119 or UL 263. The
758		installation of the fire protection material shall comply with the applicable
759		requirements of the building code, the referenced approved assemblies, and
760		manufacturer instructions.
761		
762		The weight-to-heated-perimeter ratios (W/D) and area-to-heated-perimeter
763		ratios (A/P) shall be determined in accordance with the definitions given in
764		this section. As used in these sections, W is the average weight of a shape
765		in pounds per linear foot and A is the area in square inches. The heated pe-
766		rimeter, D or P, is the inside perimeter of the fire-resistant material or exte-
767 768		rior contour of the steel shape in inches, as defined for each type of member.
769	2a.	Steel Columns
770	2	Ster columns
771		The fire-resistance ratings of columns shall be based on the size of the mem-
772		ber and the type of protection provided in accordance with this section.
773		
774		The application of these procedures for noncomposite steel column assem-
775		blies shall be limited to designs in which the fire-resistant material is not
776		designed to carry any of the load acting on the column.
777 778		Mechanical, electrical, and plumbing elements shall not be embedded in re-
779		quired fire-resistant materials, unless fire-endurance test results are available
780		to establish the adequacy of the resulting condition.
781		······································
782		User Note: The International Building Code requires fire resistance rated
783		columns to be protected on all sides for the full column height, including
784		connections with other structural members and protection continuity through
785		any ceilings to the top of the column.
786 787		(a) Crypting Wallboard Protection
787 788		(a) Gypsum Wallboard Protection
789		The fire resistance of columns with weight-to-heated perimeter ratios
790		(W/D) less than or equal to 3.65 lb/ft/in. (0.22 kg/m/mm) and protected
791		with Type X gypsum wallboard is permitted to be determined from the
792		following expression for a maximum column rating of 4-hours:
793		
794		$R = 130 \left[\frac{h \left(\frac{W'}{D} \right)}{2} \right]^{0.75} \tag{A-4-24}$
795		$R = 96 \left[\frac{h \left(\frac{W'}{D} \right)}{2} \right]^{0.75} \tag{A-4-24M}$
796		
797		where
798 700		D = inside heated perimeter of the gypsum board, in. (mm)
799 800		R = fire resistance, minutes W = nominal weight of steel shape. lb/ft (kg/m)
800		W = nominal weight of steel shape, lb/ft (kg/m)

801	W' - total weight of steel shape and gungum wellboard protection
802	W' = total weight of steel shape and gypsum wallboard protection, lb/ft (kg/m)
802	h = total nominal thickness of Type X gypsum wallboard, in. (mm)
804	<i>n</i> total nonlinal anexicss of Type A gypsani wanooard, in: (inin)
805	and
806	$\frac{W'}{D} = \frac{W}{D} + \frac{50h}{144} $ (A-4-25)
	$\frac{D}{D} = \frac{D}{D} + 0.0008h \tag{A-4-25M}$
807	$\frac{W'}{D} = \frac{W}{D} + 0.0008h$ (A-4-25M)
	D D
808	
809	For columns with weight-to-heated-perimeter ratios, <i>W/D</i> , greater than
810	3.65 lb/ft/in. (0.22 kg/m/mm), the thickness of Type X gypsum wall-
811	board required for specified fire-resistance ratings shall be the same as
812	the thickness determined for $W/D = 3.65$ lb/ft/in. (0.22 kg/m/mm).
813	
814	User Note: This equation has been developed and long used for steel
815	column fire protection with any Type X gypsum board. Since Type C
816	gypsum board has demonstrated improved fire performance relative to
817	Type X board, these provisions may also be conservatively applied to
818	column protection with any Type C gypsum board. The supporting test
819	data and accompanying gypsum board installation methods limit the
820	computed fire resistance rating of the steel column to a maximum of 3-
821	hours or 4-hours, as specified in the next section.
822	
823	The gypsum board or gypsum panel products shall be installed and sup-
824	ported as required either in UL X526 for fire-resistance ratings of four
825	hours or less, or in UL X528 for fire-resistance ratings of three hours or
826	less.
827	
828	User Note: The attachment of the Type X gypsum board protection for
829	the steel columns must be done in accordance with the referenced UL
830	assemblies. UL X526 is applicable only when exterior steel covers are
831	installed over the gypsum board. Otherwise, UL X528 describes the
832	more general gypsum board installation.
833	
834	(b) Sprayed and Intumescent/Mastic Fire-Resistant Materials
835	
836	The fire resistance of columns protected with sprayed or intumes-
837	cent/mastic fire-resistant coatings shall be determined on the basis of
838	standard fire-resistance rated assemblies, any associated computations
839	and limits as provided in the applicable rated assemblies.
840 841	The fire resistance of wide flance columns protocted with arrow of fire
841 842	The fire resistance of wide-flange columns protected with sprayed fire-
842 842	resistant materials is permitted to be determined as:
843	Г <i>(</i> тт.) Л
844	$R = \left C_1 \left(\frac{W}{D} \right) + C_2 \right h \tag{A-4-26}$
845	$R = \left\lceil C_3 \left(\frac{W}{D}\right) + C_4 \right\rceil h \tag{A-4-26M}$
0-5	$\mathbf{R} = \begin{bmatrix} \mathbf{C}_3 \\ \overline{\mathbf{D}} \end{bmatrix}^+ \mathbf{C}_4 \begin{bmatrix} n \\ n \end{bmatrix} $ (R-4-2014)
846	
847	where
848	$C_1, C_2, C_3, \text{ and } C_4 = \text{material-dependent constants prescribed in}$
849	specified rated assembly
850	D = heated perimeter of the column, in. (mm)
500	2 neared permitter of the column, in: (iiiii)

851	R	= fire resistance, minutes	
852	W	= weight of columns, pound	ls per linear foot
853	,,	(kg/m)	as per mieur root
854	h	= thickness of sprayed fire-r	esistant material
855	п	in. (mm)	esistant material,
856		III. (IIIII)	
857	The meetonial d	langendant constants C C C and C	7 aball ba datar
		dependent constants, C_1 , C_2 , C_3 , and C_4	
858		cific fire-resistant materials on the basis	
859		s. The computational usage for each co	
860		nd its material-dependent constants shall	
861		underlying fire test basis reflected in t	he selected rated
862	assembly.		
863			
864		e fire resistance rated steel column asser	
865		other test laboratories, will often includ	
866	tion equations	and specific constants that depend on t	the particular fire
867	protection prod	duct. The applicability limits of each g	given design cor-
868	relation relative	e to the column assembly, sprayed fire	-resistant protec-
869	tion product, W	7/D, rating duration, minimum required t	thickness, and the
870	like must be fol	llowed to remain within the range of the	e existing fire test
871	data range.	2	C C
872	0		
873	The fire resistar	nce of HSS columns protected with spra	wed fire-resistant
874		mitted to be determined from empirical	
875		n A-4-25 expressed in terms of A/P val	
876		(mm^2) and P is the heated perimeter.	
877		d in the rated column assembly for eac	
878		pendent constants shall be followed.	
879	no materiar dep	sendent constants shan oc ronowed.	
880	(c) Noncomposite	Columns Encased in Concrete	
881	(c) Noncomposite	Columns Encased in Coherete	
882	The fire registe	nag of noncomposite columns fully on	aged within ear
883		nce of noncomposite columns fully end	
884		n is permitted to be determined from t	the following ex-
	pression:		
885			
886		$R = R_o (1 + 0.03m)$	(A-4-27)
887	where		
		т. (Г ¬0.8)	
888	$R_o = 10 \left(\frac{W}{D}\right)^{0.7}$	$+17\frac{h^{1.6}}{K_c^{0.2}}\left\{1+26\left[\frac{H}{p_c c_c h(L+h)}\right]^{0.8}\right\}$	(A-4-28)
889			
890	$R_o = 73 \left(\frac{W}{D}\right)^{0.7} + 0.$	$.162 \frac{h^{1.6}}{K_c^{0.2}} \left\{ 1 + 31,000 \left[\frac{H}{p_c c_c h(L+h)} \right]^{0.4} \right\}$	⁸ { (A-4-28M)
001			J
891			
892		rimeter of the column, in. (mm)	
893		emperature thermal capacity of the stee	el column, Btu/ ft
894	°F (W/kJ		
895	= 0.11 W (0		
896		emperature thermal conductivity of the	concrete, Btu/hr
897	ft °F. (W/		
898	L = interior dir	mension of one side of a square concret	te box protection,
899	in. (mm)		
900	R = fire endura	nce at equilibrium moisture conditions,	, minutes

901	R_o = fire endurance at zero moisture content, minutes
902	W = average weight of the column, lb/ft (kg/m)
903	c_c = ambient temperature specific heat of concrete, Btu/lb °F (kJ/kg K)
904	h = thickness of the concrete cover, measured between the exposed con-
905	crete and nearest outer surface of the encased steel column section,
906	in. (mm)
907	m = equilibrium moisture content of the concrete by volume, %
908	$p_c = \text{concrete density, lb/ft}^3 (\text{kg/m}^3)$
909	
910	When the inside perimeter of the concrete protection is not square, L
911	shall be taken as the average of its two rectangular side lengths (L_1 and
912	L_2). If the thickness of the concrete cover is not constant, h shall be
913	taken as the average of h_1 and h_2 .
914	-

User Note: The variables in these equations are illustrated in the figure.

For wide-flange columns completely encased in concrete with all reentrant spaces filled, the thermal capacity of the concrete within the reentrant spaces is permitted to be added to the ambient thermal capacity of the steel column, as follows:

$$H = 0.11W + \left(\frac{p_c c_c}{144}\right) (b_f d - A_s)$$
(A-4-29)

$$H = 0.46W + \left(\frac{p_c c_c}{1,000,000}\right) (b_f d - A_s)$$
(A-4-29M)

where

 A_s = area of the steel column, in.² (mm²) b_f = flange width of the column, in. (mm)

 b_f = flange width of the column, in. (d =depth of the column, in. (mm)

User Note: It is conservative to neglect this additional concrete term in the column fire resistance calculation.

In the absence of more specific data for the ambient properties of the concrete encasement, it is permitted to use the values provided in Table A-4.3.2.

Table A-4.3.2

Ambient Properties of Concrete Encasement for Steel Column Fire Resistance			
Property Normal Weight Light Weight Concrete Concrete			
Thermal conductivity, K_c	0.95 Btu/hr-ft-°F (1.64 W/m K)	0.35 Btu/hr-ft-°F (0.61 W/m K)	
Specific heat, $c_{ m c}$	0.20 Btu/lb °F (840 J/kg K)	0.20 Btu/lb °F (840 J/kg K)	
Density, p _c	145 lb/ft ³ (2300 kg/m ³)	110 lb/ft ³ (1800 kg/m ³)	
Equilibrium (free) moisture con- tent, <i>m</i> , by volume	4%	5%	

User Note: The estimated free moisture content of concrete given in Table A-4.3.2 may not be appropriate for all conditions, particularly for older concrete that has already been in service for a longer time. For these and similar situations of uncertainty, it is conservative to not rely on this beneficial effect of the free moisture and to assume the concrete is completely dry with m = 0 for fire resistance of $R = R_o$.

(d) Noncomposite Columns Encased in Masonry Units of Concrete or Clay

The fire resistance of noncomposite columns protected by encasement with concrete masonry units or with clay masonry units is permitted to be determined from the following expression:

$$R = 0.17 \left(\frac{W}{D}\right)^{0.7} + \left[0.285 \left(\frac{T_e^{1.6}}{K_c^{0.2}}\right)\right] \left\{1.0 + 42.7 \left[\frac{\left(A_g/d_m T_e\right)}{\left(0.25 p + T_e\right)}\right]^{0.8}\right\}$$

$$R = 1.22 \left(\frac{W}{D}\right)^{0.7} + \left[0.0027 \left(\frac{T_e^{1.6}}{K_c^{0.2}}\right)\right] \left\{1.0 + 1249 \left[\frac{\left(A_g/d_m T_e\right)}{\left(0.25 \, p + T_e\right)}\right]^{0.8}\right\}$$
(A-4-30M)

966	where	
967	A_s	= cross-sectional area of column, in. ² (mm^2)
968	D	= heated perimeter of column, in. (mm)
969	K_c	= thermal conductivity of concrete or clay masonry unit,
970		Btu/hr-ft-°F (W/m K) (see Table A-4.3.3)
971	R	= fire-resistance rating of column assembly, hours
972	T_e	= equivalent thickness of concrete or clay masonry unit,
973		in accordance with ACI 216.1, in. (mm)
974	W	= average weight of column, lb/ft (kg/m)
975	d_m	= density of the concrete or clay masonry unit, lb/ft^3 (kg/m ³)
976	р	= inner perimeter of concrete or clay masonry protection, in.
977	-	(mm)
978		

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

947

948

949

950

951 952 953

954

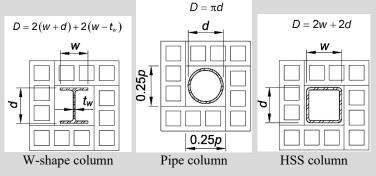
955 956

957

958

959 960

961


962

963

964

The thermal conductivity values given in Table A-4.3.3 as a function of the concrete or clay masonry unit density is permitted for use with this encasement protection formulation.

User Note: Equation A-4-30 is derived from Equation A-4-27 assuming m = 0, $c_c = 0.2$ Btu/lb °F (840 J/kg K), $h = T_e$, and L = p/4. The following cross-sections illustrate three different configurations for concrete masonry units or clay masonry unit encasement of steel columns, along with the applicable fire protection design variables.

d = depth of a wide flange column, outside diameter of pipe column, or outside dimension of hollow structural section column, in. (mm) $t_w =$ thickness of web of wide flange column, in. (mm) w = width of flange of wide flange or hollow structural section, in.

w = which of hange of while hange or hollow structural section, in. (mm)

Table A-4.3.3
Thermal Conductivity of Masonry Units for
Steel Column Encasement

Unit Density,	Unit Thermal Conductivity			
d_m , lb/ft ³ (kg/m ³)	<i>K</i> , Btu/hr ft °F (W/m K)			
Concrete	Masonry Units			
80 (1300)	0.207 (0.36)			
85 (1400)	0.228 (0.40)			
90 (1400)	0.252 (0.44)			
95 (1500)	0.278 (0.48)			
100 (1600)	0.308 (0.53)			
105 (1700)	0.340 (0.59)			
110 (1800)	0.376 (0.65)			
115 (1800)	0.416 (0.72)			
120 (1900)	0.459 (0.80)			
125 (2000)	0.508 (0.88)			
130 (2100)	0.561 (0.97)			
135 (2200)	0.620 (1.1)			
140 (2200)	0.685 (1.2)			
145 (2300)	0.758 (1.3)			
150 (2400)	0.837 (1.5)			
Clay Masonry Units				
120 (1900)	1.25 (2.2)			
130 (2100)	2.25 (3.9)			

2b. Composite Steel-Concrete Columns

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1002 The fire resistance rating of columns acting compositely with concrete (con-1003 crete-filled or encased) is permitted to be based on the size of the composite 1004 member and concrete protection in accordance with this section. 1005

(a) Concrete-Filled Columns

1006

1007 1008

1009

1010

1011

1012

1013

1014

1015 1016 1017

1018

1019

1020

1021

1022 1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

The fire resistance rating of hollow structural section (HSS) columns filled with unreinforced normal weight concrete, steel-fiber-reinforced normal weight concrete or bar-reinforced normal weight concrete is permitted to be determined in accordance with Equation A-4-31 or A-4-31M.

The application of these equations shall be limited by all of the following conditions:

- (1)The required fire resistance rating *R* shall be less than or equal to the limits specified in Tables A-4.3.5 or A-4.3.5M. (2) The specified compressive strength of concrete, f'_c , the column effective length, L_c , the dimension D, the concrete reinforcement ratio, and the thickness of the concrete cover
 - shall be within the limits specified in Tables A-4.3.5 or A-4.3.5M. (3)C shall not exceed the design strength of the concrete or the
 - reinforced concrete core determined in accordance with this Specification.
 - A minimum of two 1/2 in.(13 mm) diameter holes shall be (4) placed opposite each other at the top and bottom of the column and at maximum 12-ft (3.7-m) on center spacing along the column height. Each set of vent holes should be rotated 90° relative to the adjacent set of holes to relieve steam pressure.

$$R = \frac{0.58a(f_c' + 2.9)D^2 \left(\frac{D}{C}\right)^{0.5}}{L_c - 3.28}$$
(A-4-31)

$$=\frac{a(f_c'+20)D^2\left(\frac{D}{C}\right)^{0.5}}{60(L_c-1,000)}$$
(A-4-31M)

1036	where	
1037	C	= compressive force due to unfactored dead load and live load,
1038		kips (kN)
1039	D	= outside diameter for circular columns, in. (mm)
1040		= outside dimension for square columns, in. (mm)
1041		= least outside dimension for rectangular columns, in. (mm)
1042	L_c	= column effective length, ft (mm)
1043	R	= fire resistance rating in hours
1044	а	= constant determined from Table A-4.3.4
1045	f'_c	= 28-day compressive strength of concrete, ksi (MPa)
1046	-	
1047		
1048		

Table A-4.3.4Values of Constant a for Normal Weight Concrete				
		Reinf.	а	
Aggregate Type	Concrete Fill Type	Ratio (%)	Circular Columns	Square or Rec- tangular Columns
siliceous	unreinforced	NA	0.070	0.060
siliceous	steel-fiber- reinforced	2	0.075	0.065
	steel-bar-	1.5 – 3	0.080	0.070
siliceous	reinforced	3 – 5	0.085	0.070
carbonate	unreinforced	NA	0.080	0.070
carbonate	steel-fiber- reinforced	2	0.085	0.075
aarbanata	steel-bar-	1.5 – 3	0.090	0.080
carbonate	reinforced	3 – 5	0.095	0.085
NA = not applicable				

Table A-4.3.5					
Limits for the	use of Equat	ion A-4-31 Pa	arameters		
Parameter		Concrete Fill Type			
	Unreinforced	Steel-Fiber- Reinforced	Steel-Bar Reinforced		
<i>R</i> , hr	≤2	≤ 3	≤ 3		
<i>f</i> _c ', ksi	2.9 – 5.8	2.9 - 8.0	2.9 - 8.0		
L_c , ft	6.5 – 13.0	6.5 – 15.0	6.5 – 15.0		
D (round), in.	5.5 – 16.0	5.5 – 16.0	6.5 – 16.0		
<i>D</i> (square or rectangu- lar), in.	5.5 – 12.0	4.0 - 12.0	7.0 – 12.0		
Reinforcement, %	NA	2% of concrete mix by mass	1.5 – 5% of section area		
Concrete cover, in.	NA	NA	≥ 1.0		
NA = not applicable					

l	053	

Table A-4.3.5M Limits for the use of Equation A-4-31M Parameters					
Parameter Concrete Fill Type					
unreinforced steel-fiber- reinforced reinforced					
R (hours)	≤ 2	≤ 3	≤ 3		
fc'(MPa)	20 – 40	20–55	20–55		
L_c (mm)	2000 - 4000	2000-4500	2000-4500		
D (round) (mm)	140 – 410	140 –410	165 – 410		
D (sq. or rect.) (mm)	140 – 305	102–305	175 – 305		
Reinf. (%)	NA	2% of concrete mix by mass	1.5 – 5% of section area		
Concrete cover (mm)	NA	ŇA	≥ 25		
NA = not applicable					

(b) Composite Columns Encased in Concrete

The fire resistance of composite columns fully encased within normal weight or lightweight concrete and with no unfilled spaces is permitted to be determined as the lesser of Equation A-4-30 and the values in Table A-4.3.6.

Table A-4.3.6Minimum Size and Concrete Cover Limits forFire Resistance of Composite Steel ColumnsEncased in Concrete with No Unfilled SpacesFire ResistanceMinimum ConcreteMinimum Column

Rating, hr	Cover, <i>h</i> , in. (mm)	Outside Dimension, in. (mm)
1	1 (25)	8 (200)
2	2 (50)	10 (250)
3	2 (50)	12 (300)
4	2 (50)	14 (350)

1063 2c. Composite or Noncomposite Steel I-Shaped Beams and Girders

The fire-resistance ratings of composite or noncomposite beams and girders shall be based upon the size of the element and the type of protection provided in accordance with this section.

These procedures establish a basis for determining resistance of structural steel beams and girders that differ in size from that specified in approved fire-resistance-rated assemblies as a function of the thickness of fire-resistant material and the weight (W) and heated perimeter (D) of the beam or girder.

1075The beams provided in approved fire-resistance-rated assemblies shall be1076considered to be the minimum permissible size. Other beam or girder shapes1077is permitted to be substituted provided that the weight-to-heated-perimeter1078ratio (W/D) of the substitute beam is equal to or greater than that of the minimum beam specified in the approved assembly.

The provisions in this section apply to beams and girders protected with sprayed or intumescent/mastic fire-resistant materials.

Larger or smaller composite or noncomposite beam and girder shapes protected with sprayed fire-resistant materials are permitted to be substituted for beams specified in approved unrestrained or restrained fire-resistancerated assemblies, provided that the thickness of the fire-resistant material is adjusted in accordance with Equation A-4-32 or A-4-32M.

The use of these equations shall be limited by all of the following conditions:

- (a) The weight-to-heated-perimeter ratio for the substitute beam or girder (W_1/D_1) shall be not less than 0.37 (customary units) or 0.022 (SI units).
- (b) The thickness of fire protection materials calculated for the substitute beam or girder (T_l) shall be not less than 3/8 in. (10 mm).
- (c) The unrestrained or restrained beam rating shall be not less than 1 hour.
 - (d) Where used to adjust the material thickness for a restrained beam,

1100 the use of this procedure is limited to sections classified as compact.

1101

1102

1103

$$h_2 = \frac{h_1 \left[\left(W_1 / D_1 \right) + 0.60 \right]}{\left[\left(W_2 / D_2 \right) + 0.60 \right]}$$
(A-4-32)

$$h_2 = \frac{h_1 \left[\left(W_1 / D_1 \right) + 0.036 \right]}{\left[\left(W_2 / D_2 \right) + 0.036 \right]}$$
(A-4-32M)

1104 1105 where 1106 D = heated perimeter of the beam, in. (mm) 1107 W = weight of the beam or girder, lb/ft (kg/m) 1108 h = thickness of sprayed fire-resistant material, in. (mm) 1109 1110 Subscript 1 refers to the substitute beam or girder and the required thickness 1111 of fire-resistant material. Subscript 2 refers to the beam and fire-resistant material thickness in the 1112 1113 approved assembly. 1114 User Note: This substitution equation based on W/D for beams protected 1115 with spray-applied fire resistive materials was developed by UL with the 1116 given limitations. The minimum W/D ratio of 0.37 prevents the use of this 1117 equation for determining the fire resistance of very small shapes that have 1118 not been tested. The 3/8-in. (10 mm) minimum thickness of protection is a 1119 practical application limit based upon the most commonly used spray-ap-1120 plied fire protection materials. 1121 1122 1123 The fire resistance of composite or noncomposite beams and girders pro-1124 tected with intumescent or mastic fire-resistant coatings shall be determined 1125 on the basis of standard fire-resistance rated assemblies, and associated com-1126 putations and limits as provided in the applicable rated assemblies. 1127 1128 2d. **Concrete-Encased Steel Beams and Girders** 1129 1130 The fire resistance rating of concrete-encased steel beams and girders is permitted to be determined in accordance with Items 2-1.1 or 2-1.2 of Table 1131 1132 A-4.3.1. 1133 1134 2e. Trusses 1135 1136 The fire resistance of trusses with members individually protected by fire-1137 resistant materials applied onto each of the individual truss elements is per-1138 mitted to be determined for each member in accordance with the Appendix 1139 4, Section 4.3.1. The protection thickness of truss elements that can be simultaneously exposed to fire on all sides shall be determined for the same 1140 weight-to-heated perimeter ratio, W/D, as columns. The protection thick-1141 ness of truss elements that directly support floor or roof assembly is permit-1142 1143 ted to be determined for the same weight-to-heated-perimeter ratio, W/D, as 1144 for beams and girders. 1145 2f. 1146 **Concrete Floor Slabs on Steel Deck** 1147 1148 For composite concrete floor slabs on trapezoidal steel decking wherein the 1149 upper width of the deck rib is equal to or greater than its bottom rib width, the fire resistance rating, based on the thermal insulation criterion for the 1150

1151unexposed surface temperature, shall be permitted to be calculated using the1152following equation:

$$R = a_0 + a_1h_1 + a_2h_2 + a_3l_2 + a_4l_3 + a_5m + a_6h_1^2 + a_7h_1h_2 + a_8h_1l_2 + a_9h_1l_3 + a_{10}h_1m + a_{11}h_2l_2 + a_{12}h_2l_3 + a_{13}h_2m + a_{14}l_2l_3 + a_{15}l_2m + a_{16}l_3m$$
(A-4-33)

1154	
1155	
1156	where
1157	R = fire resistance rating in minutes
1158	h_1 = concrete slab thickness above steel deck, in. (mm)
1159	h_2 = depth of steel deck, in. (mm)
1160	$l_1 = $ largest upper width of deck rib, in. (mm)
1161	l_2 = bottom width of deck rib, in (mm)
1162	l_3 = width of deck upper flange, in (mm)
1163	m = moisture content of the concrete slab. Range of applicability is be-
1164	tween 0% (0.0) and 10% (0.1).
1165	
1166	User Note: The slab dimensions in Equation A-4-33 are illustrated in
1167	the figure.
1168	
1169	
	h_1

1176

1153

The coefficients a_0 to a_{16} are given in Table A-4.3.7.

TABL	E A-4.3.7 Coefficien with Equation	· 1·
	Coeffic	ient Value
Coefficient	Normal-weight concrete	Lightweight concrete
a_0	38.6 min	68.7 min
<i>a</i> ₁	–5.08 min/in. (–0.2 min/mm)	-36.58 min/in. (-1.44 min/mm)
<i>a</i> ₂	-1.45 min/in. (-0.057 min/mm)	–2.79 min/in. (–0.11 min/mm)
<i>a</i> ₃	−3.30 min/in. (−0.13 min/mm)	−12.70 min/in. (−0.5 min/mm)
a_4	-2.08 min/in. (-0.082 min/mm)	20.07 min/in. (0.79 min/mm)
<i>a</i> ₅	-118.1 min	-784.2 min
<i>a</i> ₆	4.06 min/in. ² (0.0063 min/mm ²)	8.84 min/in. ² (0.0137 min/mm ²)
<i>a</i> ₇	1.48 min/in. ² (0.0023 min/mm ²)	3.61 min/in. ² (0.0056 min/mm ²)
a_8	1.87 min/in. ² (0.0029 min/mm ²)	3.68 min/in. ² (0.0057 min/mm ²)
<i>a</i> ₉	0	-2.39 min/in. ² (-0.0037 min/mm ²)
<i>a</i> ₁₀	263.1 min/in. (10.36 min/mm)	444.5 min/in. (17.5 min/mm)
<i>a</i> ₁₁	1.16 min/in. ² (0.0018 min/mm ²)	2.06 min/in. ² (0.0032 min/mm ²)
<i>a</i> ₁₂	0	-3.42 min/in. ² (-0.0053 min/mm ²)
<i>a</i> ₁₃	0	91.44 min/in. (3.6 min/mm)
<i>a</i> ₁₄	–0.65 min/in.² (–0.001 min/mm²)	-0.97 min/in. ² (-0.0015 min/mm ²)
<i>a</i> ₁₅	0	42.42 min/in. (1.67 min/mm)
<i>a</i> ₁₆	0	-66.04 min/in. (-2.6 min/mm)

1178

1179 1180

1181

1182 1183 1184

1185 1186

1187

1188 1189

1190

1191

1192

1193

2g.

Composite Plate Shear Walls

г

For unprotected composite plate shear walls meeting the requirements of Chapter I, and satisfying the following conditions, the fire resistance rating shall be determined in accordance with Equation A-4-34 or A-4-34M.

User Note: If moisture content values are not available, m = 4% can be used

for normal-weight concrete, and m = 5% can be used for lightweight con-

crete, consistent with Annex D of Eurocode 4. Dry conditions (m = 0%) will

- Wall slenderness ratio (L/t_{sc}) is less than or equal to 20 (a)
- Axial load ratio (P_u/P_n) is less than or equal to 0.2 (b)

yield the most conservative fire resistance rating.

Wall thickness, t_{sc} , is greater than or equal to 8 in. (200 mm) (c)

1194 1195

$$R = \left[-18.5 \left(\frac{P_u}{P_n} \right)^{\left(0.24 - \frac{L/t_{sc}}{230} \right)} + 15 \right] \left(\frac{1.9t_{sc}}{8} - 1 \right)$$
(A-4-34)

1196
$$R = \left[-18.5 \left(\frac{P_u}{P_n}\right)^{\left(0.24 - \frac{L/t_{sc}}{230}\right)} + 15 \right] \left(\frac{1.9t_{sc}}{200} - 1\right)$$
(A-4-34M)

1199 1200

1201

1203 1204

1205

1206

1207

1208

1209

1210 1211

1212

1214 1215

1216

1217

1218

1219 1220

1221 1222

1223

where R is the fire rating in hours, P_u is the applied axial load in kips (kN), and L, t_{sc} , and P_n are as defined in Chapter I.

1202 3. **Restrained Construction**

For floor and roof assemblies and individual beams in buildings, a restrained condition exists when the surrounding or supporting structure is capable of resisting forces and accommodating deformations caused by thermal expansion throughout the range of anticipated elevated temperatures. Cast-inplace or prefabricated concrete floor or roof construction secured to steel framing members, and individual steel beams and girders that are welded or bolted to integral framing members shall be considered restrained construction.

1213 4. **Unrestrained Construction**

> Steel beams, girders and frames that do not support a concrete slab shall be considered unrestrained unless the members are bolted or welded to surrounding construction that has been specifically designed and detailed to resist effects of elevated temperatures.

A steel member bearing on a wall in a single span or at the end span of multiple spans shall be considered unrestrained unless the wall has been designed and detailed to resist effects of thermal expansion. PUBLIC

APPENDIX 5

1

2 3

10

11 12

13

14

15

16 17 18

19 20

21

22

23

24

25

26

27

30

31

32

34 35

36

37 38

39

50

EVALUATION OF EXISTING STRUCTURES

This appendix applies to the evaluation of the strength and stiffness of existing structures
tures by structural analysis, by load tests, or by a combination of structural analysis
and load tests where specified by the engineer of record or in the contract documents.
Load testing in accordance with this appendix applies to static vertical gravity load
effects.

The Appendix is organized as follows:

- 5.1. General Provisions
- 5.2. Material Properties
 - 5.3. Evaluation by Structural Analysis
- 5.4. Evaluation by Load Tests
- 5.5. Evaluation Report

5.1. GENERAL PROVISIONS

These provisions shall be applicable where the evaluation of an existing steel structure is specified for (a) verification of a specific set of design loadings or (b) determination of the available strength of a load-resisting member or system. The evaluation shall be performed by structural analysis (Section 5.3), by load tests (Section 5.4), or by a combination of structural analysis and load tests, where specified in the contract documents by the engineer of record (EOR).

28 5.2. MATERIAL PROPERTIES29

For evaluations in accordance with this appendix, steel grades other than those listed in Section A3.1 are permitted.

33 1. Determination of Required Tests

The EOR shall determine the specific tests that are required from Sections 5.2.2 through 5.2.6 and specify the locations where they are required. The use of applicable project records is permitted to reduce or eliminate the need for testing.

40 2. Tensile Properties41

42 Tensile properties of members shall be established for use in evaluation by 43 structural analysis (Section 5.3) or load tests (Section 5.4). Such properties shall 44 include the yield stress, tensile strength and percent elongation. Certified ma-45 terial test reports or certified reports of tests made by the fabricator or a testing 46 laboratory in accordance with ASTM A6/A6M or A568/A568M, as applicable, 47 are permitted for this purpose. Otherwise, tensile tests shall be conducted in 48 accordance with ASTM A370 from samples taken from components of the 49 structure.

51 3. Chemical Composition52

53 Where welding is anticipated for repair or modification of existing structures, 54 the chemical composition of the steel shall be determined for use in preparing 55 a welding procedure specification. Results from certified material test reports 56 or certified reports of tests made by the fabricator or a testing laboratory in 57 accordance with ASTM procedures are permitted for this purpose. Otherwise, 58 analyses shall be conducted in accordance with ASTM A751 from the samples 59 used to determine tensile properties or from samples taken from the same loca-60 tions. 61

62 4. **Base Metal Notch Toughness**

Where welded tension splices in heavy shapes and plates as defined in Section A3.1e are critical to the performance of the structure, the Charpy V-notch toughness shall be determined in accordance with the provisions of Section A3.1e. If the notch toughness so determined does not meet the provisions of Section A3.1e, the EOR shall determine if remedial actions are required.

70 5. Weld Metal

63 64

65

66 67

68

69

71 72

73

74

75

76

77

78

80

81 82

83

84 85

86

87

88

90 91

92 93

94

97

98

100

105

Where structural performance is dependent on existing welded connections, representative samples of weld metal shall be obtained. Chemical analysis and mechanical tests shall be made to characterize the weld metal. A determination shall be made of the magnitude and consequences of imperfections. If the requirements of Structural Welding Code-Steel, AWS D1.1/D1.1M, are not met, the EOR shall determine if remedial actions are required.

79 **Bolts and Rivets** 6.

Representative samples of bolts shall be visually inspected to determine markings and classifications. Where it is not possible to classify bolts by visual inspection, representative samples shall be taken and tested to determine tensile strength in accordance with ASTM F606/F606M and the bolt classified accordingly. Alternatively, the assumption that the bolts are ASTM A307 is permitted. Rivets shall be assumed to be ASTM A502 Grade 1 unless a higher grade is established through documentation or testing.

89 5.3. EVALUATION BY STRUCTURAL ANALYSIS

1. **Dimensional Data**

All dimensions used in the evaluation, such as spans, column heights, member spacings, bracing locations, cross-section dimensions, thicknesses, and connec-95 tion details, shall be determined from a field survey. Alternatively, it is permit-96 ted to determine such dimensions from applicable project design or fabrication documents with field verification of critical values.

99 2. **Strength Evaluation**

Forces (load effects) in members and connections shall be determined by struc-101 102 tural analysis applicable to the type of structure evaluated. The load effects 103 shall be determined for the loads and factored load combinations stipulated in Section B2. 104

106 The available strength of members and connections shall be determined from 107 applicable provisions of Chapters B through K and Appendix 5 of this Specifi-108 cation.

109		
110	2a.	Rivets
111		
112		The design tensile or shear strength, ϕR_n , and the allowable tensile or shear
113		strength, R_n/Ω , of a driven rivet shall be determined according Section J3.7, and
114		driven rivets under combined tension and shear shall satisfy the requirements
115		of Section J3.8,
116		
117		where
118		A_b = nominal body area of undriven rivet, in. ² (mm ²)
119		F_{nt} = nominal tensile strength of the driven rivet from Table A-5.3.1, ksi
120		(MPa)
121		F_{nv} = nominal shear strength of the driven rivet from Table A-5.3.1, ksi

 F_{nv} = nominal shear strength of the driven rivet from Table A-5.3.1, ksi (MPa)

Des	Table A-5.3.1 sign Strength of I	Rivets
Description of Rivet	Nominal Tensile Strength, ksi (MPa) ^[a]	Nominal Shear Strength, ksi (MPa) ^[b]
A502, Grade 1, hot- driven rivets	45 (310)	25 (170)
^[a] Static loading only. ^[b] Refer to Note [b] of	Table J3.2.	

125 **3.** Serviceability Evaluation

122

123

124

126

127 128

129

131

133 134

135

136

142

144

Where required, the deformations at service loads shall be calculated and reported.

130 5.4. EVALUATION BY LOAD TESTS

132 1. General Requirements

This section applies only to static vertical gravity loads applied to existing roofs or floors.

Where load tests are used, the EOR shall first analyze the structure, prepare a
testing plan, and develop a written procedure for the test. The plan shall consider collapse and/or excessive levels of permanent deformation, as defined by
the EOR, and shall include procedures to preclude either occurrence during
testing.

143 **2. Determination of Load Rating by Testing**

145To determine the load rating of an existing floor or roof structure by testing, a146test load shall be applied incrementally in accordance with the EOR's plan. The147structure shall be visually inspected for signs of distress or imminent failure at148each load level. Measures shall be taken to prevent collapse if these or any other149unusual conditions are encountered.150

151 The tested strength of the structure shall be taken as the maximum applied test 152 load plus the in-situ dead load. The live load rating of a floor structure shall be 153 determined by setting the tested strength equal to 1.2D + 1.6L, where D is the

154	nominal dead load and L is the nominal live load rating for the structure. For	
155	roof structures, L_r , S, or R shall be substituted for L,	
156		

where

157

158

159

160

161 162

175 176

177

178 179

180

181 182

184 185

186

187

188

189

191

- L_r = nominal roof live load
 - R = nominal load due to rainwater or snow, exclusive of the ponding contribution
- S = nominal snow load
- More severe load combinations shall be used where required by the applicable
 building codes.

166 Periodic unloading is permitted once the service load level is attained, and after 167 the onset of inelastic structural behavior is identified, to document the amount 168 of permanent set and the magnitude of the inelastic deformations. Deformations 169 of the structure, such as member deflections, shall be monitored at critical lo-170 cations during the test, referenced to the initial position before loading. It shall 171 be demonstrated, while maintaining maximum test load for one hour, that the 172 deformation of the structure does not increase by more than 10% above that at the beginning of the holding period. It is permissible to repeat the test loading 173 sequence if necessary to demonstrate compliance. 174

- Deformations of the structure shall also be recorded 24 hours after the test loading is removed to determine the amount of permanent set.
- Where it is not feasible to load test the entire structure, a segment or zone of not less than one complete bay representative of the most critical condition shall be selected.

183 **3.** Serviceability Evaluation

Where load tests are prescribed, the structure shall be loaded incrementally to the service load level. The service test load shall be held for a period of one hour, and deformations shall be recorded at the beginning and at the end of the one-hour holding period.

190 5.5. EVALUATION REPORT

192 After the evaluation of an existing structure has been completed, the EOR shall 193 prepare a report documenting the evaluation. The report shall indicate whether the evaluation was performed by structural analysis, by load testing, or by a 194 195 combination of structural analysis and load testing. Furthermore, where testing 196 is performed, the report shall include the loads and load combination used and 197 the load-deformation and time-deformation relationships observed. All relevant 198 information obtained from design documents, material test reports, and auxil-199 iary material testing shall also be reported. The report shall indicate whether 200 the structure, including all members and connections, can withstand the load 201 effects.

APPENDIX 6

MEMBER STABILITY BRACING

This appendix addresses the minimum strength and stiffness necessary for bracing to develop the required strength of a column, beam, or beam-column. The appendix is organized as follows:

- 6.1. General Provisions
- 6.2. Column Bracing
- 6.3. Beam Bracing

1

6 7

8 9

10

11

12

13

20

21 22

23

24

25

26 27

28 29

30

31 32

33

34

35

36 37

38

39 40

41

42

43 44

45

46 47

48

49 50 51

52

6.4. Beam-Column Bracing

User Note: Stability requirements for lateral force-resisting systems are provided in Chapter C. The provisions in this appendix apply to bracing that is not generally included in the analysis model of the overall structure, but is provided to stabilize individual columns, beams and beam-columns. Guidance for applying these provisions to stabilize trusses is provided in the Commentary.

6.1. GENERAL PROVISIONS

Bracing systems shall have the strength and stiffness specified in this Appendix, as applicable. Where such a system braces more than one member, the strength and stiffness of the bracing shall be based on the sum of the required strengths of all members being braced, and shall consider the flexibility of all components in the system. The evaluation of the stiffness furnished by the bracing shall include the effects of connections and anchoring details.

User Note: More detailed analyses for bracing strength and stiffness are presented in the Commentary.

A panel brace (formerly referred to as a relative brace) limits the angular deviation of a segment of the braced member between braced points (that is, the lateral displacement of one end of the segment relative to the other). A point brace (formerly referred to as a nodal brace) limits the movement at the braced point without direct interaction with adjacent braced points. A continuous bracing system consists of bracing that is attached along the entire member length.

The available strength and stiffness of the bracing members and connections shall equal or exceed the required strength and stiffness, respectively, unless analysis indicates that smaller values are justified.

Columns, beams, and beam-columns with end and intermediate braced points designed to meet the requirements in Sections 6.2, 6.3, and 6.4, as applicable, are permitted to be designed based on lengths L_c and L_b , as defined in Chapters E and F, taken equal to the distance between the braced points.

- In lieu of the requirements of Sections 6.2, 6.3, and 6.4,
- (a) The required brace strength and stiffness can be obtained using a secondorder analysis that satisfies the provisions of Chapter C or Appendix 1, as

53		appropriate, and includes brace points displaced from their nominal loca-
54		tions in a pattern that provides for the greatest demand on the bracing.
55		(b) The required bracing stiffness can be obtained as $2/\phi$ (LRFD) or 2Ω
56		(ASD) times the ideal bracing stiffness determined from a buckling anal-
57		ysis. The required brace strength can be determined using the provisions
58		of Sections 6.2, 6.3, and 6.4, as applicable.
59		(c) For either of the above analysis methods, members with end or interme-
60		diate braced points meeting these requirements may be designed based on
61		effective lengths, L_c and L_b , taken less than the distance between braced
62		points.
63		1
64		User Note: The stability bracing requirements in Sections 6.2, 6.3, and 6.4
65		are based on buckling analysis models involving idealizations of common
66		bracing conditions. Computational analysis methods may be used for greater
67		generality, accuracy, and efficiency for more complex bracing conditions. The
68		Commentary to Section 6.1 provides guidance on these considerations.
69		
70	6.2.	COLUMN BRACING
71		
72		It is permitted to laterally brace an individual column at end and intermediate
73		points along its length using either panel or point bracing.
74		
75		User Note: This section provides requirements only for lateral bracing. Col-
76		umn lateral bracing is assumed to be located at the shear center of the column.
77		When lateral bracing does not limit twist, the column is susceptible to torsional
78		buckling, as addressed in Section E4. When the lateral bracing is offset from
79		the shear center, the column is susceptible to constrained-axis torsional buck-
80		ling, which is also addressed in Section E4 and its accompanying Commentary.
81		
82	1.	Panel Bracing
83		ů – je v
84		The panel bracing system shall have the strength and stiffness specified in this
85		section. The connection of the bracing system to the column shall have the
86		strength specified in Section 6.2.2 for a point brace at that location.
87		
88		User Note: If the stiffness of the connection to the panel bracing system is
89		comparable to the stiffness of the panel bracing system itself, the panel bracing
90		system and its connection to the column function as a panel and point bracing
91		system arranged in series. Such cases may be evaluated using the alternative
92		analysis methods listed in Section 6.1.
93		
94		In the direction perpendicular to the longitudinal axis of the column, the re-
95		quired shear strength of the bracing system is:
96		
97		$V_{hr} = 0.005 P_r$ (A-6-1)
98		
99		and, the required shear stiffness of the bracing system is:
100		,
100		1(2P)
101		$\beta_{br} = \frac{1}{\phi} \left(\frac{2P_r}{L_{br}} \right) \text{(LRFD)} \tag{A-6-2a}$
102		
103		$\beta_{br} = \Omega \left(\frac{2P_r}{L_{br}} \right) $ (ASD) (A-6-2b)
104		Lor /

APP6-3

105 $\phi = 0.75$ (LRFD) 106 107 where 108 L_{br} = unbraced length within the panel under consideration, in. (mm) 109 P_r = required axial strength of the column within the panel under consid-110 eration, using LRFD or ASD load combinations, kips (N) 111 112 2. **Point Bracing** 113 114 In the direction perpendicular to the longitudinal axis of the column, the re-115 quired strength of end and intermediate point braces is 116 117 $P_{hr} = 0.01 P_r$ (A-6-3) 118 119 and, the required stiffness of the brace is 120 $\beta_{br} = \frac{1}{\phi} \left(\frac{8P_r}{L_{br}} \right) \quad (\text{LRFD})$ 121 (A-6-4a) $\beta_{br} = \Omega \left(\frac{8P_r}{L} \right) \quad (ASD)$ 122 (A-6-4b) 123 124 $\phi = 0.75 (LRFD)$ $\Omega = 2.00 \text{ (ASD)}$ 125 126 where L_{br} = unbraced length adjacent to the point brace, in. (mm) 127 P_r = largest of the required axial strengths of the column within the unbraced 128 lengths adjacent to the point brace using LRFD or ASD load combina-129 130 tions, kips (N) 131 132 When the unbraced lengths adjacent to a point brace have different P_r/L_{br} val-133 ues, the larger value shall be used to determine the required brace stiffness. 134 135 For intermediate point bracing of an individual column, Lbr in Equations A-6-136 4a or A-6-4b need not be taken less than the maximum effective length, L_c , 137 permitted for the column based upon the required axial strength, P_r . 138 139 6.3. BEAM BRACING 140 141 Beams shall be restrained against rotation about their longitudinal axis at points 142 of support. When a braced point is assumed in the design between points of 143 support, lateral bracing, torsional bracing, or a combination of the two shall be 144 provided to limit the relative displacement of the top and bottom flanges (i.e., 145 to resist twist). In members subject to double curvature bending, the inflection 146 point shall not be considered a braced point unless bracing is provided at that 147 location. 148 149 The requirements of this section shall apply to bracing of doubly and singly 150 symmetric I-shaped members subjected to flexure within a plane of symmetry 151 and zero net axial force. 152

- 153 1. Lateral Bracing
- 154

		nge, except
• •		attached at
		ng shall be
• •		•
-		
It is per	mitted to use either panel or point bracing to provide lateral	bracing for
beams.		
a. Panel E	Sracing	
T 1		C 1 1 .
strengt	r specified in Section 0.5.10 for a point brace at that location	
User N	Note: The stiffness contribution of the connection to the part	nel bracing
sjourn		
The req	uired shear strength of the bracing system is	
-		
	$V_{br} = 0.01 \left(\frac{M_r C_d}{h_o} \right)$	(A-6-5)
and, the	e required shear stiffness of the bracing system is	
	$\beta_{br} = \frac{1}{\phi} \left(\frac{4M_r C_d}{L_{br} h_o} \right) \text{(LRFD)}$	(A-6-6a)
	$\beta_{br} = \Omega \left(\frac{4M_r C_d}{L_{br} h_o} \right) (\text{ASD})$	(A-6-6b)
	$\mathcal{O}_{\mathbf{x}} \mathcal{A}_{\mathbf{y}}$	
	$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$	
	= 1.0 exact in the following ease:	
		subject to
		subject to
L_{br}		(mm)
	eration, using LRFD or ASD load combinations, kip-in. (1	
h_o :	= distance between flange centroids, in. (mm)	
b. Point l	Bracing	
т.1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
		he required
strengt	n oi end and intermediate point braces is	
	$P_{br} = 0.02 \left(\frac{M_r C_d}{h_o} \right)$	(A-6-7)
	as follo (a) At t or r (b) For atta poin It is per beams. a. Panel H The par section. strength User N system The req and, the L_{br} M_r h_o b. Point I In the o	a. Panel Bracing The panel bracing system shall have the strength and stiffness speci section. The connection of the bracing system to the member sha strength specified in Section 6.3.1b for a point brace at that location User Note: The stiffness contribution of the connection to the par- system should be assessed as provided in the User Note to Section The required shear strength of the bracing system is

204		
205		and, the required stiffness of the brace is
206		
207		$\beta_{br} = \frac{1}{\phi} \left(\frac{10M_r C_d}{L_{br} h_o} \right) (\text{LRFD}) $ (A-6-8a)
208		$\beta_{br} = \Omega\left(\frac{10M_rC_d}{L_{br}h_o}\right) (\text{ASD}) \tag{A-6-8b}$
209		
209		$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$
210		$\psi = 0.75 (LKLD)$ $S_2 = 2.00 (ASD)$
212		where
212		L_{br} = unbraced length adjacent to the point brace, in. (mm)
213		M_r = largest of the required flexural strengths of the beam within the un-
215 216		braced lengths adjacent to the point brace using LRFD or ASD load combinations, kip-in. (N-mm)
216 217		comoniations, kip-in. (N-inin)
217		When the unbraced lengths adjacent to a point brace have different M_r/L_{br}
219		values, the larger value shall be used to determine the required brace stiffness.
220		For intermediate point bracing of an individual beam to in Equations A 6
221		For intermediate point bracing of an individual beam, L_{br} in Equations A-6-
222		8a or A-6-8b need not be taken less than the maximum effective length, L_b ,
223		permitted for the beam based upon the required flexural strength, M_r .
224		
225	2.	Torsional Bracing
226		
227		It is permitted to attach torsional bracing at any cross-section location, and it
228		need not be attached near the compression flange.
229		
230		User Note: Torsional bracing can be provided as point bracing, such as cross-
231		from an important composted because an exaction 1 diant in the
222		frames, moment-connected beams or vertical diaphragm elements, or as con-
232		frames, moment-connected beams or vertical diaphragm elements, or as con- tinuous bracing, such as slabs or decks.
233	2.9	tinuous bracing, such as slabs or decks.
233 234	2 a.	
233 234 235	2a.	tinuous bracing, such as slabs or decks. Point Bracing
233 234 235 236	2a.	tinuous bracing, such as slabs or decks.Point BracingAbout the longitudinal axis of the beam, the required flexural strength of the
233 234 235	2a.	tinuous bracing, such as slabs or decks. Point Bracing
233 234 235 236 237	2a.	tinuous bracing, such as slabs or decks.Point BracingAbout the longitudinal axis of the beam, the required flexural strength of the
233 234 235 236 237 238	2a.	tinuous bracing, such as slabs or decks.Point BracingAbout the longitudinal axis of the beam, the required flexural strength of the
233 234 235 236 237 238 239 240	2a.	tinuous bracing, such as slabs or decks.Point BracingAbout the longitudinal axis of the beam, the required flexural strength of the brace is:
 233 234 235 236 237 238 239 240 241 	2a.	tinuous bracing, such as slabs or decks. Point Bracing About the longitudinal axis of the beam, the required flexural strength of the brace is: $M_{br} = \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \left(\frac{L_{br}}{500h_o}\right) \ge 0.02M_r \qquad (A-6-9)$
233 234 235 236 237 238 239 240 241 242	2a.	tinuous bracing, such as slabs or decks.Point BracingAbout the longitudinal axis of the beam, the required flexural strength of the brace is:
 233 234 235 236 237 238 239 240 241 242 243 	2a.	tinuous bracing, such as slabs or decks. Point Bracing About the longitudinal axis of the beam, the required flexural strength of the brace is: $M_{br} = \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \left(\frac{L_{br}}{500h_o}\right) \ge 0.02M_r \qquad (A-6-9)$ and, the required flexural stiffness of the brace is:
233 234 235 236 237 238 239 240 241 242	2a.	tinuous bracing, such as slabs or decks. Point Bracing About the longitudinal axis of the beam, the required flexural strength of the brace is: $M_{br} = \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \left(\frac{L_{br}}{500h_o}\right) \ge 0.02M_r \qquad (A-6-9)$
 233 234 235 236 237 238 239 240 241 242 243 	2a.	tinuous bracing, such as slabs or decks. Point Bracing About the longitudinal axis of the beam, the required flexural strength of the brace is: $M_{br} = \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \left(\frac{L_{br}}{500h_o}\right) \ge 0.02M_r \qquad (A-6-9)$ and, the required flexural stiffness of the brace is:
 233 234 235 236 237 238 239 240 241 242 243 244 	2a.	tinuous bracing, such as slabs or decks. Point Bracing About the longitudinal axis of the beam, the required flexural strength of the brace is: $M_{br} = \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \left(\frac{L_{br}}{500h_o}\right) \ge 0.02M_r \qquad (A-6-9)$ and, the required flexural stiffness of the brace is:

APP6-6

249
$$\beta_{sec} = \frac{3.3E}{h_v} \left(\frac{1.5h_v t_s^3}{12} + \frac{t_w b_s^3}{12} \right)$$
(A-6-12)
250 and
251
252 $\phi = 0.75$ (LRFD); $\Omega = 3.00$ (ASD)
253
254 User Note: $\Omega = 1.5^2/\phi = 3.00$ in Equations A-6-11a or A-6-11b, because the
255 moment term is squared.
256
257 β_{sec} can be taken equal to infinity, and $\beta_{br} = \beta_T$, when a cross-frame is at-
258 tached near both flanges or a vertical diaphragm element is used that is approx-
259 imately the same depth as the beam being braced.
260
261 E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
262 $I_{veff} =$ effective out-of-plane moment of inertia, in.⁴ (mm⁴)
263 $= I_{ve} + (t/c)I_{vf}$
264 $I_{vef} =$ moment of inertia of the compression flange about the y-axis, in.⁴
265 (mm⁴)
266 I_{vf} = moment of inertia of the tension flange about the y-axis, in.⁴
267 L = length of span, in. (mm)
268 L_{br} = unbraced length adjacent to the point brace, in. (mm)
268 I_{or} = unbraced lengths adjacent to the point brace, using LRFD or ASD
271 load combinations, kip-in. (N-mm)
273 $\frac{M_r}{C_b}$ = maximum value of the required flaxural strength of the beam di-
274 vided by the moment gradient factor, within the unbraced lengths
276 $k_ip - in. (N-mm)$
277 b_v = stiffnere vidth for one-sided stiffners, in. (mm)
279 c = distance from the neutral axis to the extreme compressive fibers, in.
280 n = number of braced points within the span
281 n = number of braced points within the span
282 t = distance from the neutral axis to the extreme tensile fibers, in. (mm)
283 f_r = web distortional stiffners, in/at (N-mm/rad)
284 f_{wr} = whickness of beam web, in. (mm)
285 β_r = overall brace system required stiffners, kip-in/rad (N-mm/rad)
286 β_{wr} = weeb distortional stiffners, in/at (N-mm/rad)
287 f_r = web distortional stiffners, induling the effect of web transverse
287 stiffeners, if any, kip-in./rad (N-mm/rad)
288 f_r = overall brace System required stiffnexes, which indicates that
299 torsional

 $\beta_T = \Omega \frac{3.6L}{nEI_{yeff}} \left(\frac{M_r}{C_b}\right)^2 \text{ (ASD)}$

248

291

292

293 294

295

stiffness.

(A-6-11b)

User Note: For doubly symmetric members, c = t and I_{yeff} = out-of-plane moment of inertia, I_{y} , in.⁴ (mm⁴).

296 297 298 299 300 301		When required, a web stiffener shall extend the full depth of the braced mem- ber and shall be attached to the flange if the torsional brace is also attached to the flange. Alternatively, it is permissible to stop the stiffener short by a dis- tance equal to $4t_w$ from any beam flange that is not directly attached to the torsional brace.
302		When, $(M_r/C_b)^2 L_{br}$, within the unbraced lengths adjacent to a point brace
303		have different values, the larger value shall be used to determine the required
304		brace strength and stiffness.
305		
306		In Equations A-6-9 and A-6-11, L_{br} need not be taken less than the maximum
307		unbraced length permitted for the beam based upon the required flexural
308		strength, M_r .
309 310	2b.	Continuous Bracing
310	20.	Continuous bracing
312		For continuous torsional bracing:
313		
314		(a) The brace strength requirement per unit length along the beam shall be
315		taken as Equation A-6-9 divided by the maximum unbraced length per-
316		mitted for the beam based upon the required flexural strength, M_r . The
317		required flexural strength, M_r , shall be taken as the maximum value
318		throughout the beam span.
319		(b) The brace stiffness requirement per unit length shall be given by Equations A = (10 and A = (11 with L/v = 1.0)
320		A-6-10 and A-6-11 with $L/n = 1.0$.
321		(c) The web distortional stiffness shall be taken as:
322		
323		$\beta_{sec} = \frac{3.3Et_w^3}{12h_o} \tag{A-6-13}$
324		C
325	6.4.	BEAM-COLUMN BRACING
326		
327		For bracing of beam-columns, the required strength and stiffness for the axial
328		force shall be determined as specified in Section 6.2, and the required strength
329 330		and stiffness for flexure shall be determined as specified in Section 6.3. The values so determined shall be combined as follows:
331		values so determined shan be combined as follows.
332		(a) When panel bracing is used, the required strength shall be taken as the
333		sum of the values determined using Equations A-6-1 and A-6-5, and the
334		required stiffness shall be taken as the sum of the values determined using
335		Equations A-6-2 and A-6-6.
336		
337		(b) When point bracing is used, the required strength shall be taken as the sum
338		of the values determined using Equations A-6-3 and A-6-7, and the re-
339		quired stiffness shall be taken as the sum of the values determined using $\sum_{i=1}^{n} A_i \left(A_{i} + A_{i} \right) A_i \left(A_{i} +$
340		Equations A-6-4 and A-6-8. In Equations A-6-4 and A-6-8, L_{br} for beam-
341		columns shall be taken as the actual unbraced length; the provisions in
342		Sections 6.2.2 and 6.3.1b, that L_{br} need not be taken less than the maxi-
343		mum permitted effective length based upon P_r and M_r , shall not be applied
711		and and a second s

(c) When torsional bracing is provided for flexure in combination with panel or point bracing for the axial force, the required strength and stiffness shall

344

345 346

347

plied.

348	be combined or distributed in a manner that is consistent with the re-
349	sistance provided by the element(s) of the actual bracing details.
350	
351	(d) When the combined stress effect from axial force and flexure results in
352	compression to both flanges, either lateral bracing shall be added to both
353	flanges or both flanges shall be laterally restrained by a combination of
354	lateral and torsional bracing.
355	
356	User Note: For case (d), additional guidelines are provided in the Commen-
357	tary.

An HUBLICAL FEB. 24

APPENDIX 7

ALTERNATIVE METHODS OF DESIGN FOR STABILITY

This appendix presents alternatives to the direct analysis method of design for stability defined in Chapter C. The two alternative methods covered are the effective length method and the first-order analysis method.

The appendix is organized as follows:

- 7.1. General Stability Requirements
- 7.2. Effective Length Method

7.3. First-Order Analysis Method

7.1. GENERAL STABILITY REQUIREMENTS

The general requirements of Section C1 shall apply. As an alternative to the direct analysis method (defined in Sections C1 and C2), it is permissible to design structures for stability in accordance with either the effective length method, specified in Section 7.2, or the first-order analysis method, specified in Section 7.3, subject to the limitations indicated in those sections.

7.2. EFFECTIVE LENGTH METHOD

1. Limitations

1

2

7

8

9 10

11 12

13

14

15 16

17 18

19

20

21

22

23 24

25 26

27 28

29 30

31

32 33

34

35 36

37

38 39

40

41

43 44

45

46 47

48

49

When using the effective length method, the following conditions shall be met:

- (a) The structure supports gravity loads primarily through nominally vertical columns, walls or frames.
- (b) The ratio of maximum second-order drift to maximum first-order drift (both determined for load and resistance factor design (LRFD) load combinations or 1.6 times allowable strength design (ASD) load combinations, with stiffness not adjusted as specified in Section C2.3) in all stories is equal to or less than 1.5.

User Note: The ratio of second-order drift to first-order drift in a story may be taken as the B_2 multiplier, calculated as specified in Appendix 8.

42 2. Required Strengths

The required strengths of components shall be determined from an elastic analysis conforming to the requirements of Section C2.1, except that the stiffness reduction indicated in Section C2.1(a) shall not be applied; the nominal stiffnesses of all structural steel components shall be used. Notional loads shall be applied in the analysis in accordance with Section C2.2b.

50 User Note: Since the condition specified in Section C2.2b(d) will be satisfied 51 in all cases where the effective length method is applicable, the notional load 52 need only be applied in gravity-only load cases.

53 54	3.	Available Strengths
55 56 57		The available strengths of members and connections shall be calculated in ac- cordance with the provisions of Chapters D through K, as applicable.
58 59 60 61 62		For flexural buckling, the effective length, L_c , of members subject to compression shall be taken as KL , where K is as specified in (a) or (b), in the following, as applicable, and L is the laterally unbraced length of the member.
62 63 64 65 66 67 68		(a) In braced-frame systems, shear-wall systems, and other structural systems where lateral stability and resistance to lateral loads does not rely on the flexural stiffness of columns, the effective length factor, K , of members subject to compression shall be taken as unity unless a smaller value is justified by rational analysis.
69 70 71 72 73 74 75 76		(b) In moment-frame systems and other structural systems in which the flex- ural stiffnesses of columns are considered to contribute to lateral stability and resistance to lateral loads, the effective length factor, K , or elastic crit- ical buckling stress, F_e , of those columns whose flexural stiffnesses are considered to contribute to lateral stability and resistance to lateral loads shall be determined from a sidesway buckling analysis of the structure; K shall be taken as 1.0 for columns whose flexural stiffnesses are not con- sidered to contribute to lateral stability and resistance to lateral loads.
77 78 79 80 81		Exception: It is permitted to use $K = 1.0$ in the design of all columns if the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations) in all stories is equal to or less than 1.1.
82 83 84		User Note: Methods of calculating the effective length factor, <i>K</i> , are discussed in the Commentary.
85 86 87 88		Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to limit member movement at the braced points.
89 90 91 92 93		User Note: Methods of satisfying the bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the design of the lateral force-resisting system of the overall structure.
93 94 95	7.3.	FIRST-ORDER ANALYSIS METHOD
95 96 97	1.	Limitations
98 99 100		When using the first-order analysis method, the following conditions shall be met:
101 102		(a) The structure supports gravity loads primarily through nominally vertical columns, walls or frames.
103 104 105		(b) The required axial compressive strengths in nominally horizontal mem- bers in moment frames subject to bending satisfy the limitation:

 $\alpha P_r \le 0.08 P_e \tag{A-7-1}$

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

106

109		where
110		$\alpha = 1.0 \text{ (LRFD)}; \alpha = 1.6 \text{ (ASD)}$
111		P_r = required axial compressive strength using LRFD or ASD load
112		combinations, kips (N)
112		$P_e = \pi^2 E I / L^2$, kips (N)
		$T_e = \pi E T E$, kips (iv)
114 115		(a) The ratio of maximum second order drift to maximum first order drift
115		(c) The ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load
117		combinations, with stiffness not adjusted as specified in Section C2.3) in
118		all stories is equal to or less than 1.5.
119		
120		User Note: The ratio of second-order drift to first-order drift in a story
121		may be taken as the B_2 multiplier, calculated as specified in Appendix 8.
122		
123		(d) The required axial compressive strengths of all members whose flexural
124		stiffnesses are considered to contribute to the lateral stability of the struc-
125		ture satisfy the limitation:
126		$\mathbf{D} < 0.5\mathbf{D} \qquad (4.7.2)$
127		$\alpha P_r \le 0.5 P_{ns} \tag{A-7-2}$
128		
129 130		where P_{ns} = cross-section compressive strength; for nonslender-element sec-
130		tions, $P_{ns} = F_y A_g$, and for slender-element sections,
131		$P_{ns} = F_y A_e$, where A_e is as defined in Section E7 with $F_n = F_y$,
133 134		kips (N)
1.24		
	2	Required Strengths
135	2.	Required Strengths
	2.	
135 136	2.	Required Strengths The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The
135 136 137	2.	The required strengths of components shall be determined from a first-order
135 136 137 138 139 140	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The
135 136 137 138 139 140 141	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure.
135 136 137 138 139 140 141 142	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, <i>N_i</i> , applied
135 136 137 138 139 140 141 142 143	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure.
135 136 137 138 139 140 141 142 143 144	2.	 The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, <i>N_i</i>, applied in combination with other loads at each level of the structure:
135 136 137 138 139 140 141 142 143 144 145	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, <i>N_i</i> , applied
135 136 137 138 139 140 141 142 143 144 145 146	2.	 The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i, applied in combination with other loads at each level of the structure: N_i=2.1α(Δ/L)Y_i≥0.0042Y_i (A-7-3)
135 136 137 138 139 140 141 142 143 144 145 146 147	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where
135 136 137 138 139 140 141 142 143 144 145 146 147 148	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	2.	 The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i, applied in combination with other loads at each level of the structure: N_i = 2.1α(Δ/L)Y_i ≥ 0.0042Y_i (A-7-3) where α = 1.0 (LRFD); α = 1.6 (ASD) Y_i = gravity load applied at level <i>i</i> from the LRFD load combina-
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150	2.	 The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i, applied in combination with other loads at each level of the structure: N_i = 2.1α(Δ/L)Y_i≥0.0042Y_i (A-7-3) where α = 1.0 (LRFD); α = 1.6 (ASD) Y_i = gravity load applied at level <i>i</i> from the LRFD load combination or ASD load combination, as applicable, kips (N)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}$
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD) $Y_i =$ gravity load applied at level <i>i</i> from the LRFD load combina- tion or ASD load combination, as applicable, kips (N) $\Delta/L =$ maximum ratio of Δ to <i>L</i> for all stories in the structure $\Delta =$ first-order interstory drift due to the LRFD or ASD load com-
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD) $Y_i =$ gravity load applied at level <i>i</i> from the LRFD load combina- tion or ASD load combination, as applicable, kips (N) $\Delta/L =$ maximum ratio of Δ to <i>L</i> for all stories in the structure $\Delta =$ first-order interstory drift due to the LRFD or ASD load com- bination, as applicable, in. (mm). Where Δ varies over the
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1 \alpha (\Delta/L) Y_i \ge 0.0042 Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average drift$
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average driftweighted in proportion to vertical load or, alternatively, the$
135136137138139140141142143144145146147148149150151152153154155156	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average driftweighted in proportion to vertical load or, alternatively, themaximum drift.$
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average driftweighted in proportion to vertical load or, alternatively, the$
$\begin{array}{c} 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ \end{array}$	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average driftweighted in proportion to vertical load or, alternatively, themaximum drift.L = height of story, in. (mm)$
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	2.	The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure. (a) All load combinations shall include an additional lateral load, N_i , applied in combination with other loads at each level of the structure: $N_i = 2.1\alpha(\Delta/L)Y_i \ge 0.0042Y_i$ (A-7-3) where $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$ $Y_i = \text{gravity load applied at level i from the LRFD load combina-tion or ASD load combination, as applicable, kips (N)\Delta/L = \text{maximum ratio of } \Delta \text{ to } L \text{ for all stories in the structure}\Delta = first-order interstory drift due to the LRFD or ASD load com-bination, as applicable, in. (mm). Where \Delta varies over theplan area of the structure, \Delta shall be the average driftweighted in proportion to vertical load or, alternatively, themaximum drift.$

161 162 163		lateral loads shall be applied in the direction that provides the greatest de- stabilizing effect.
164		User Note: For most building structures, the requirement regarding the
165		direction of N_i may be satisfied as follows: (a) For load combinations that
166		do not include lateral loading, consider two alternative orthogonal direc-
167		tions for the additional lateral load in a positive and a negative sense in
168		each of the two directions, same direction at all levels; (b) for load com-
169		binations that include lateral loading, apply all the additional lateral loads
170		in the direction of the resultant of all lateral loads in the combination.
171		
172		(b) The nonsway amplification of beam-column moments shall be included
173		by applying the B_1 amplifier of Appendix 8 to the total member moments.
174		
175		User Note: Since there is no second-order analysis involved in the first-order
176		analysis method for design by ASD, it is not necessary to amplify ASD load
177		combinations by 1.6 before performing the analysis, as required in the direct
178		analysis method and the effective length method.
179		
180 181	3.	Available Strengths
182		
102		I he available strengths of members and connections shall be calculated in ac-
182		The available strengths of members and connections shall be calculated in ac- cordance with the provisions of Chapters D through K, as applicable.
183		
183 184 185 186		cordance with the provisions of Chapters D through K, as applicable.
183 184 185		cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the
183 184 185 186		cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the
183 184 185 186 187		cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis.
183 184 185 186 187 188 189 190		cordance with the provisions of Chapters D through K, as applicable.The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis.Bracing intended to define the unbraced lengths of members shall have suffi-
183 184 185 186 187 188 189 190 191		cordance with the provisions of Chapters D through K, as applicable.The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis.Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to limit member movement at the braced points.User Note: Methods of satisfying this requirement are provided in Appendix
183 184 185 186 187 188 189 190 191 192		 cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to limit member movement at the braced points. User Note: Methods of satisfying this requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is in-
183 184 185 186 187 188 189 190 191 192 193		 cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to limit member movement at the braced points. User Note: Methods of satisfying this requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the analysis of the overall structure as part of the overall force-resist-
183 184 185 186 187 188 189 190 191 192		 cordance with the provisions of Chapters D through K, as applicable. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to limit member movement at the braced points. User Note: Methods of satisfying this requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is in-

APPENDIX 8

APPROXIMATE ANALYSIS

5 This appendix provides approximate analysis procedures for determining the required 6

strength of structural members and connections.

The appendix is organized as follows:

1

2 3 4

7

8 9

10

11

14

15

16

17

18 19

20

21

22 23

24

25 26

27 28

36

37

38

39 40

41

42

43 44

45

46

47

48

49

50

51

52

8.1. Approximate Second-Order Elastic Analysis

8.2. Approximate Inelastic Moment Redistribution

12 8.1. **APPROXIMATE SECOND-ORDER ELASTIC ANALYIS** 13

Second-order effects in structures may be approximated by amplifying the required strengths determined by two first-order elastic analyses. The use of this procedure is limited to structures that support gravity loads primarily through nominally vertical columns, walls or frames, except that it is permissible to use the procedure specified for determining P- δ effects for any individual compression member. This method is not permitted for design by advanced analysis using the provisions of Appendix 1.

User Note: The two first-order elastic analyses include (1) restrained against translation (nt), and (2) lateral translation (lt), using the subscript notation in Equations A-8-1 and A-8-2.

1. Calculation Procedure

The required second-order flexural strength, M_r , and axial strength, P_r , of all members shall be determined as:

$$M_r = B_1 M_{nt} + B_2 M_{lt} \tag{A-8-1}$$

$$P_r = P_{nt} + B_2 P_{lt} \tag{A-8-2}$$

where

- multiplier to account for P- δ effects, determined for each member subject to compression and flexure, and each direction of bending of the member in accordance with Appendix 8, Section 8.1.2. B_1 shall be taken as 1.0 for members not subject to compression.
- $B_2 =$ multiplier to account for $P-\Delta$ effects, determined for each story of the structure and each direction of lateral translation of the story in accordance with Appendix 8, Section 8.1.3.
- $M_{lt} =$ first-order moment using LRFD or ASD load combinations, due to lateral translation of the structure only, kipin. (N-mm)
- first-order moment using LRFD or ASD load combina- $M_{nt} =$ tions, with the structure restrained against lateral translation, kip-in. (N-mm)
- required second-order flexural strength using LRFD or $M_r =$ ASD load combinations, kip-in. (N-mm)

 P_{lt} = first-order axial force using LRFD or ASD load combinations, due to lateral translation of the structure only, kips (N)

- P_{nt} = first-order axial force using LRFD or ASD load combinations, with the structure restrained against lateral translation, kips (N)
- P_r = required second-order axial strength using LRFD or ASD load combinations, kips (N)

User Note: Equations A-8-1 and A-8-2 are applicable to all members in all structures. Note, however, that B_1 values other than unity apply only to moments in beam-columns; B_2 applies to moments and axial forces in components of the lateral force-resisting system (including columns, beams, bracing members, and shear walls). See the Commentary for more on the application of Equations A-8-1 and A-8-2.

2. Multiplier B_1 for P- δ Effects

The B_1 multiplier for each member subject to compression and each direction of bending of the member is calculated as:

$$B_1 = \frac{C_m}{1 - \alpha P_r / P_{e1}} \ge 1$$
 (A-8-3)

where

 $\alpha = 1.0 (LRFD); \alpha = 1.6 (ASD)$

 C_m = equivalent uniform moment factor, assuming no relative translation of the member ends, determined as follows:

(a) For beam-columns not subject to transverse loading between supports in the plane of bending

$$C_m = 0.6 - 0.4 (M_1/M_2) \tag{A-8-4}$$

where M_1 and M_2 , calculated from a first-order analysis, are the smaller and larger moments, respectively, at the ends of that portion of the member unbraced in the plane of bending under consideration. M_1/M_2 is positive when the member is bent in reverse curvature, and negative when bent in single curvature.

- (b) For beam-columns subject to transverse loading between supports, the value of C_m shall be determined either by analysis or conservatively taken as 1.0 for all cases.
- P_{e1} = elastic critical buckling strength of the member in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, kips (N)

$$= \frac{\pi^2 EI^*}{(L_{c1})^2}$$
(A-8-5)

where

Specification for Structural Steel Buildings, xx, 2022 Draft dated January 5, 2022 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

$ \begin{array}{r} 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ \end{array} $	EI^* = flexural rigidity required to be used in the analysis (= 0.8 $\tau_b EI$ when used in the direct analysis method, where τ_b is as defined in Chapter C; = EI for the effective length and first-order analysis methods) E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa) I = moment of inertia in the plane of bending, in. ⁴ (mm ⁴) L_{c1} = effective length in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, set equal to the laterally unbraced length of the member unless analysis justifies a smaller value, in. (mm)
118	It is permitted to use the first-order estimate of P_r (i.e., $P_r = P_{nt} + P_{lt}$
119) in Equation A-8-3.
120) = -1
121	3. Multiplier B ₂ for P-Δ Effects
122	
123	The B_2 multiplier for each story and each direction of lateral transla-
124	tion is calculated as:
125	
125	
126	$B_2 = \frac{1}{1 - \frac{\alpha P_{story}}{P_{e\ story}}} \ge 1 \tag{A-8-6}$
107	
127	where
128	$\alpha = 1.0 \text{ (LRFD)}; \alpha = 1.6 \text{ (ASD)}$
129	P_{story} = total vertical load supported by the story using LRFD
130	or ASD load combinations, as applicable, including
131	loads in columns that are not part of the lateral force-
132	resisting system, kips (N)
133	$P_{e \ story}$ = elastic critical buckling strength for the story in the di-
134	rection of translation being considered, kips (N), deter-
135	mined by sidesway buckling analysis or as:
136	$= R_M \frac{H L}{\Delta_H} $ (A-8-7)
127	
137	H = total story shear, in the direction of
138	translation being considered, produced by the lateral
139	forces used to compute Δ_{H} , kips (N)
140	L = height of story, in. (mm)
141	$R_M = 1 - 0.15 \left(P_{mf} / P_{story} \right) $ (A-8-8)
142	P_{mf} = total vertical load in columns in the story that are part
143	of moment frames, if any, in the direction of translation
144	being considered (= 0 for braced-frame systems), kips
145	(N)
146	Δ_H = first-order interstory drift, in the direction of transla-
147	tion being considered, due to lateral forces, in. (mm),
148	computed using the stiffness required to be used in
140	the analysis. (When the direct analysis method is
150	used, stiffness is reduced according to Section C2.3.)
150	
	Where Δ_H varies over the plan area of the structure, it
152 153	shall be the average drift weighted in proportion to
1.3.3	vertical load or, alternatively, the maximum drift.

User Note: The story gravity load (P_{story} and P_{mf}) includes loading from levels above and on nonframe columns and walls, and the weight of wall panels laterally supported by the lateral-force-resisting system; it need not include the vertical component of the seismic force.

> User Note: R_M can be taken as 0.85 as a lower bound value for stories that include moment frames, and $R_M = 1$ if there are no moment frames in the story. *H* and Δ_H in Equation A-8-7 may be based on any lateral loading that provides a representative value of story lateral stiffness, H/Δ_H .

APPROXIMATE INELASTIC MOMENT REDISTRIBUTION 167 8.2.

169 The required flexural strength of indeterminate beams comprised of compact 170 sections, as defined in Section B4.1, carrying gravity loads only, and satisfying 171 the unbraced length requirements provided in this Section, is permitted to be 172 taken as nine-tenths of the negative moments at the points of support, produced by the gravity loading and determined by an elastic analysis satisfying the re-173 174 quirements of Chapter C, provided that the maximum positive moment is in-175 creased by one-tenth of the average negative moment determined by an elastic 176 analysis. This moment redistribution is not permitted for moments in members 177 with F_{ν} exceeding 65 ksi (450 MPa), for moments produced by loading on 178 cantilevers, for design using partially restrained (PR) moment connections, or 179 for design by inelastic analysis using the provisions of Appendix 1.3. This 180 moment redistribution is permitted for design according to Section B3.1 181 (LRFD) and for design according to Section B3.2 (ASD). The required axial 182 strength shall not exceed $0.15\phi_c F_{\gamma}A_g$ for LRFD or $0.15F_{\gamma}A_g/\Omega_c$ for ASD, where ϕ_c and Ω_c are determined from Section E1, A_g = gross area of member, in.² 183 (mm²), and F_{y} = specified minimum yield stress, ksi (MPa). 184

The laterally unbraced length, L_b , of the compression flange adjacent to the redistributed end moment locations shall not exceed L_m determined as follows.

> (a) For doubly symmetric and singly symmetric I-shaped beams with I_{vc} of the compression flange equal to or larger than I_{yt} of the tension flange loaded in the plane of the web

$$L_m = \left[0.12 + 0.076 \left(\frac{M_1}{M_2} \right) \right] \left(\frac{E}{F_y} \right) r_y \tag{A-8-9}$$

193

185 186

187

188 189

190

191

192

154 155

156

157

158 159

160 161

162 163

164

165

166

168

194 195 196

197

198

199

(b) For solid rectangular bars and for rectangular HSS and symmetric box beams bent about their major axis

$$L_m = \left[0.17 + 0.10 \left(\frac{M_1}{M_2} \right) \right] \left(\frac{E}{F_y} \right) r_y \ge 0.10 \left(\frac{E}{F_y} \right) r_y \qquad (A-8-10)$$

200	where
201	F_y =specified minimum yield stress of the compression flange, ksi (MPa)
202	M_1 = smaller moment at end of unbraced length, kip-in. (N-mm)
203	M_2 = larger moment at end of unbraced length, kip-in. (N-mm)
204	r_y = radius of gyration about y-axis, in. (mm)

205	(M_1/M_2) is positive when moments cause reverse curvature and negative
206	for single curvature
207	
208	There is no limit on L_b for members with round or square cross sections or for
209	any beam bent about its minor axis.
210	

PUBLICA. HER. 24. 2022